This paper presents numerical predictions of flow around irregular-plan buildings (S-, R-, L- and U-shaped models) in high Reynolds number. The adopted computational approach and numerical models are described firstly. Then comparative analysis with the numerical and experimental data has been conducted to verify the reliability of the numerical predictions. Finally, characteristics of mean and fluctuating pressure distributions and vertical and lateral velocity profiles of the flow around the four models have been investigated and assessed thoroughly. The study shows that satisfactory results can be obtained by large eddy simulation (LES), especially when fluctuating wind velocity is considered in the inflow boundary. Distribution of mean pressure coefficients on front faces is relatively regular. Large fluctuating pressure coefficients are induced by strong vortex motion. Velocity profiles of wind flow are disturbed obviously among the four building models, especially in weak flow. The disturbed intensity decreases with increasing of the distance away from bluff body. The suggested MDS (Maximum Disturbance Scopes) away from bluff body are generally 0.25H in inflow zones, 0.4H in roof zones, 0.5H in both side zones and 3H in weak zones.

References

References
1.
Ehrhard
,
J.
, and
Moussiopoulos
,
N.
, 2000, “
On a New Nonlinear Turbulence Model for Simulating Flows Around Building-Shaped Structures
,”
J. Wind Eng. Ind. Aerodyn.
,
88
(
1
), pp.
91
99
.
2.
Smirnov
,
A.
,
Shi
,
S.
, and
Celik
,
I.
, 2001, “
Random Flow Generation Technique for LES and Particle-Dynamics Modeling
,”
ASME J. Fluids Eng.
,
123
(
2
), pp.
359
371
.
3.
Wright
,
N. G.
, and
Eason
,
G. J.
, 2003, “
Non-Linear Turbulence Model Results for Flow Over a Building at Full-Scale
,”
Appl. Math. Model.
,
27
(
12
), pp.
1013
1033
.
4.
Hanjalic
,
K.
, 2005, “
Will RANS Survive LES? A View of Perspectives
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
831
839
.
5.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
, 2008, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
6.
Celik
,
I.
,
Klein
,
M.
, and
Janicka
,
J.
, 2009, “
Assessment Measures for Engineering LES Applications
,”
ASME J. Fluids Eng.
,
131
(
3
), p.
031102
7.
Murakami
,
S.
, and
Mochida
,
A.
, 1995, “
On Turbulent Vortex Shedding Flow Past 2D Square Cylinder Predicted by CFD
,”
J. Wind Eng. Ind. Aerodyn.
,
54
, pp.
191
211
.
8.
Fasel
,
H. F.
,
Seidel
,
J.
, and
Wernz
,
S.
, 2002, “
A Methodology for Simulations of Complex Turbulent Flows
,”
ASME J. Fluids Eng.
,
124
(
4
), pp.
933
943
.
9.
Fureby
,
C.
, 2007, “
ILES and LES of Complex Engineering Turbulent Flows
,”
ASME J. Fluids Eng.
,
129
(
12
), pp.
1514
1524
.
10.
Shah
,
K. B.
, and
Ferziger
,
J. H.
, 1996, “
Large-Eddy Simulations of Flow Past a Cubical Obstacle
,” Department of Mechanical Engineering, Stanford University, Thermosciences Division Report No. TF-70.
11.
Shah
,
K. B.
, and
Ferziger
,
J. H.
, 1997, “
A Fluid Mechanician’s View of Wind Engineering: Large-Eddy Simulation of Flow Past a Cubical Obstacle
,”
J. Wind Eng. Ind. Aerodyn.
,
67
, pp.
211
224
.
12.
Breuer
,
M.
,
Jovičić
,
N.
, and
Mazaev
,
K.
, 2003, “
Comparison of DES, RANS and LES for the Separated Flow Around a Flat Plate at High Incidence
,”
Int. J. Numer. Methods Fluids
,
41
(
4
), pp.
357
388
.
13.
Köse
,
D. A.
, and
Dick
,
E.
, 2010, “
Prediction of the Pressure Distribution on a Cubical Building With Implicit LES
,”
J. Wind Eng. Ind. Aerodyn.
,
98
(
10–11
), pp.
628
649
.
14.
Lim
,
H. C.
,
Thomas
,
T. G.
, and
Castro
,
I. P.
, 2009, “
Flow Around a Cube in a Turbulent Boundary Layer: LES and Experiment
,”
J. Wind Eng. Ind. Aerodyn.
,
97
, pp.
96
109
.
15.
Nozawa
,
K.
, and
Tamura
,
T.
, 2002, “
Large Eddy Simulation of the Flow Round a Low-Rise Building Immersed in a Rough-Wall Turbulent Boundary Layer
,”
J. Wind Eng. Ind. Aerodyn.
,
90
(
10
), pp.
1151
1162
.
16.
Mosedale
,
A.
, and
Drikakis
,
D.
, 2007, “
Assessment of Very High Order of Accuracy in Implicit LES Models
,”
ASME J. Fluids Eng.
,
129
(
12
), pp.
1497
1502
.
17.
Tamura
,
T.
, 2008, “
Towards Practical Use of LES in Wind Engineering
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
10–11
), pp.
1451
1471
.
18.
Hahn
,
M.
, and
Drikakis
,
D.
, 2009, “
Assessment of Large-Eddy Simulation of Internal Separated Flow
,”
ASME J. Fluids Eng.
,
131
(
7
), p.
071201
.
19.
Franke
,
J.
,
Hellsten
,
A.
,
Schlunzen
,
H.
, and
Carissimo
,
B.
, 2007,
The COST Action 732: Best Practice Guideline for the CFD Simulation of Flows in the Urban Environment
,
University of Hamburg, Hamburg
,
Germany
.
20.
Bruno
,
L.
,
Fransos
,
D.
,
Coste
,
N.
, and
Bosco
,
A.
, 2010, “
3D Flow Around a Rectangular Cylinder: A Computational Study
,”
J. Wind Eng. Ind. Aerodyn.
,
98
, pp.
263
276
.
21.
Abdalla
,
I. E.
,
Cook
,
M. J.
, and
Yang
,
Z. Y.
, 2007, “
Numerical Study of Transitional Separated–Reattached Flow Over Surface-Mounted Obstacles Using Large-Eddy Simulation
,”
Int. J. Numer. Methods Fluids
,
54
(
2
), pp.
175
206
.
22.
Camarri
,
S.
,
Salvetti
,
M. V.
,
Koobus
,
B.
, and
Dervieux
,
A.
, 2002, “
Large-Eddy Simulation of a Bluff-Body Flow on Unstructured Grids
,”
Int. J. Numer. Methods Fluids
,
40
(
11
), pp.
1431
1460
.
23.
Grinstein
,
F. F.
, and
Fureby
,
C.
, 2002, “
Recent Progress on MILES for High Reynolds Number Flows
,”
ASME J. Fluids Eng.
,
124
(
4
), pp.
848
862
.
24.
Wienken
,
W.
,
Stiller
,
J.
, and
Keller
,
A.
, 2006, “
A Method to Predict Cavitation Inception Using Large-Eddy Simulation and its Application to the Flow Past a Square Cylinder
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
316
326
.
25.
Tominaga
,
Y.
,
Mochida
,
A.
,
Murakami
,
S.
, and
Sawaki
,
S.
, 2008, “
Comparison of Various Revised k–e Models and LES Applied to Flow Around a High-Rise Building Model With 1:1:2 Shape Placed Within the Surface Boundary Layer
,”
J. Wind Eng. Ind. Aerodyn.
,
96
, pp.
389
411
.
26.
Wang
,
D. Y.
, and
Zhou
,
Y.
, 2010, “
Numerical Study on Spatial Wind-Pressure Distribution Characteristic of Three-Dimensional U-Shaped Body
,”
J. Wuhan Univ. Technol.
,
9
, pp.
157
160
(in Chinese).
27.
Gomes
,
M. G.
,
Moret Rodrigues
,
A.
, and
Mendes
,
P.
, 2005, “
Experimental and Numerical Study of Wind Pressures on Irregular-Plan Shapes
,”
J. Wind Eng. Ind. Aerodyn.
,
93
, pp.
741
756
.
28.
Smagorinsky
,
J.
, 1963, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
29.
Deardorff
,
J.
, 1970, “
A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers
,”
J. Fluid Mech.
,
41
(
2
), pp.
453
480
.
30.
Pitsch
,
H.
, 2006, “
Large-Eddy Simulation of Turbulent Combustion
,”
Ann. Rev. Fluid Mech.
,
38
, pp.
453
482
.
31.
Wagner
,
C.
,
Hüttl
,
T.
, and
Sagaut
,
P.
, 2007, “
Large-Eddy Simulation for Acoustics
,” Cambridge University Press, Cambridge, UK.
32.
Stoll
,
R.
, and
Porté-Agel
,
F.
, 2008, “
Large-Eddy Simulation of the Stable Atmospheric Boundary Layer Using Dynamic Models With Different Averaging Schemes
,”
Boundary-Layer Meteorol.
,
126
, pp.
1
28
.
33.
Sarkar
,
S.
, and
Sarkar
,
S.
, 2009, “
Large-Eddy Simulation of Wake and Boundary Layer Interactions Behind a Circular Cylinder
,”
ASME J. Fluids Eng.
,
131
(
9
), p.
091201
.
34.
Leonard
,
A.
, 1974, “
Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows
,”
Adv. Geophys.
,
18
, pp.
237
248
.
35.
Clark
,
R.
,
Ferziger
,
J.
, and
Reynolds
,
W.
, 1979, “
Evaluation of Subgrid-Scale Models Using an Accurately Simulated Turbulent Flow
,”
J. Fluid Mech.
,
91
, pp.
1
16
.
36.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W.
, 1991, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
(
7
), pp.
1760
1765
.
37.
Lilly
,
D. K.
, 1992, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
636
.
38.
Leonard
,
B. P.
, 1979, “
A Stable and Accurate Convection Modeling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
, pp.
59
98
.
39.
Dejoan
,
A.
, and
Schiestel
,
R.
, 2002, “
LES of Unsteady Turbulence via a One-Equation Subgrid-Scale Transport Model
,”
Int. J. Heat Fluid Flow
,
23
(
4
), pp.
398
412
.
40.
Murakami
,
S.
, 1998, “
Overview of Turbulence Models Applied in CWE-1997
,”
J. Wind Eng. Ind. Aerodyn.
,
74–76
(
76
), pp.
1
24
.
41.
ADINA R&D, Inc., 2005, “
Theory and Modeling Guide, Volume I, II and III
,” Watertown, MA, http://www.adina.comhttp://www.adina.com
42.
Huang
,
S. H.
,
Li
,
Q. S.
, and
Xu
,
S. L.
, 2006, “
Numerical Evaluation of Wind Effects on a Tall Steel Building by CFD
,”
J. Constr. Steel Res.
,
63
(
5
), pp.
1
16
.
43.
Hinze
,
J. O.
, 1959,
Turbulence
,
McGraw-Hill
,
New York
.
44.
Kraichnan
,
R. H.
, 1970, “
Diffusion by a Random Velocity Field
,”
Phys. Fluids
,
13
(
1
), pp.
22
31
.
45.
Huang
,
S. H.
,
Li
,
Q. S.
, and
Wu
,
J. R.
, 2010, “
A General Inflow Turbulence Generator for Large Eddy Simulation
,”
J. Wind Eng. Ind. Aerodyn.
,
98
, pp.
600
617
.
46.
Li
,
C.
,
Li
,
Q. S.
, and
Huang
,
S. H.
, 2007, “
Large Eddy Simulation on Wind Load of a Complex Large-Span Structure
,”
Proceedings of the 13th Structural Wind Engineering in China
, pp.
995
1005
(in Chinese).
47.
Castro
,
I. P.
, and
Robins
,
A. G.
, 1977, “
The Flow Around a Surface-Mounted Cube in Uniform and Turbulent Streams
,”
J. Fluid Mech.
,
79
(
2
), pp.
307
335
.
48.
Hosker
,
R. P.
, 1984, “
Flow and Diffusion Near Obstacles
,”
Atmospheric Science and Power Production
,
Technical Information Centre, U. S. Department of Energy
,
Washington
, Publication No. DOE/TIC-27601, pp.
241
326
.
49.
Kim
,
K. C.
,
Ji
,
H. S.
, and
Seong
,
S. H.
, 2003, “
Flow Structure Around a 3-D Rectangular Prism in a Turbulent Boundary Layer
,”
J. Wind Eng. Ind. Aerodyn.
,
91
, pp.
653
669
.
You do not currently have access to this content.