Hydrodynamic analysis and an optimization of a vaned diffuser in a mixed-flow pump are performed in this work. Numerical analysis is carried out by solving three-dimensional Reynolds-averaged Navier-Stokes equations using the shear stress transport turbulence model. A validation of numerical results is conducted by comparison with experimental data for the head, power, and efficiency. An optimization process based on a radial basis neural network model is performed with four design variables that define the straight vane length ratio, the diffusion area ratio, the angle at the diffuser vane tip, and the distance ratio between the impeller blade trailing edge and the diffuser vane leading edge. Efficiency as a hydrodynamic performance parameter is selected as the objective function for optimization. The objective function is numerically assessed at design points selected by Latin hypercube sampling in the design space. The optimization yielded a maximum increase in efficiency of 9.75% at the design flow coefficient compared to a reference design. The performance curve for efficiency was also enhanced in the high flow rate region. Detailed internal flow fields between the reference and optimum designs are analyzed and discussed.

References

References
1.
Goto
,
A.
, 1992, “
Study of Internal Flows in a Mixed-Flow Pump Impeller at Various Tip Clearances Using Three-Dimensional Viscous Flow Computations
,”
ASME J. Turbomach.
,
114
(
2
), pp.
373
382
.
2.
Muggli
,
F. A.
,
Holbein
,
P.
, and
Dupont
,
P.
, 2002, “
CFD Calculation of a Mixed-Flow Pump Characteristic From Shutoff to Maximum Flow
,”
ASME Trans. J. Fluids Eng.
,
124
(
3
), pp.
798
802
.
3.
Miner
,
S. M.
, 2005, “
CFD Analysis of the First-Stage Rotor and Stator in a Two-Stage Mixed Flow Pump
,”
Int. J. Rotating Mach.
,
2005
(
1
), pp.
23
29
.
4.
Miyabe
,
M.
,
Furukawa
,
A.
,
Maeda
,
H.
,
Umeki
,
I.
, and
Jittani
,
Y.
, 2009, “
A Behavior of the Diffuser Rotating Stall in a Low Specific Speed Mixed-Flow Pump
,”
Int. J. Fluid Mach. Syst.
,
2
(
1
), pp.
31
39
.
5.
Kim
,
J. H.
,
Ahn
,
H. J.
, and
Kim
,
K. Y.
, 2010, “
High-Efficiency Design of a Mixed-Flow Pump
,”
Sci. China, Ser. E: Technol. Sci.
,
53
(
1
), pp.
24
27
.
6.
Kato
,
C.
,
Mukai
,
H.
, and
Manabe
,
A.
, 2003, “
Large-Eddy Simulation of Unsteady Flow in a Mixed-Flow Pump
,”
Int. J. Rotating Mach.
,
9
(
5
), pp.
345
351
.
7.
Zangeneh
,
M.
,
Goto
,
A.
, and
Takemura
,
T.
, 1996, “
Suppression of Secondary Flows in a Mixed-Flow Pump Impeller by Application of Three-Dimensional Inverse Design Method: Part 1-Design and Numerical Validation
,”
ASME J. Turbomach.
,
118
(
3
), pp.
536
543
.
8.
Goto
,
A.
, and
Zangeneh
,
M.
, 2002, “
Hydrodynamic Design of Pump Diffuser Using Inverse Design Method and CFD
,”
ASME Trans. J. Fluids Eng.
,
124
(
2
), pp.
319
328
.
9.
Ashihara
,
K.
, and
Goto
,
A.
, 2000, “
Study on Pump Impeller With Splitter Blades Designed by 3-D Inverse Design Method
,”
Proceedings of the ASME 2000 Fluids Engineering Division Summer Meeting
,
Boston, MA
, Paper No. FEDSM2000-11073.
10.
Miyauchi
,
S.
,
Horiguchi
,
H.
,
Fukutomi
,
J. I.
, and
Takahashi
,
A.
, 2004, “
Optimization of Meridional Flow Channel Design of Pump Impeller
,”
Int. J. Rotating Mach.
,
10
(
2
), pp.
115
119
.
11.
Ashihara
,
K.
, and
Goto
,
A.
, 2001, “
Turbomachinery Blade Design Using 3-D Inverse Design Method, CFD and Optimization Algorithm
,” ASME Paper No. 2001-GT-0358.
12.
Hao
,
B.
, and
Shuliang
,
C.
, 2011, “
Optimal Design of Mixed-Flow Pump Impeller Based on Direct Inverse Problem Iteration and Genetic Algorithm
,”
Proceedings of the ASME-JSME-KSME Joint Fluids Engineering Conference 2011
,
Shizuoka, Japan
, Paper No. AJK2011-22064.
13.
Oh
,
H. W.
, and
Kim
,
K. Y.
, 2001, “
Conceptual Design Optimization of Mixed-Flow Pump Impellers Using Mean Streamline Analysis
,”
Proc. Inst. Mech. Eng., Part A
,
215
(
1
), pp.
133
138
.
14.
Huppertz
,
A.
,
Flassig
,
P. M.
,
Flassig
,
R. J.
, and
Swoboda
,
M.
, 2007, “
Knowledge-Based 2D Blade Design Using Multi-Objective Aerodynamic Optimization and a Neural Network
,” ASME Paper No. GT2007-28204.
15.
Rai
,
M. M.
, and
Madavan
,
N. K.
, 2000, “
Aerodynamic Design Using Neural Networks
,”
AIAA J.
,
38
(
1
), pp.
173
182
.
16.
Kim
,
J. H.
,
Choi
,
J. H.
,
Husain
,
A.
, and
Kim
,
K. Y.
, 2010, “
Multi-Objective Optimization of a Centrifugal Compressor Impeller Through Evolutionary Algorithms
,”
Proc. Inst. Mech. Eng., Part A
,
224
(
5
), pp.
711
721
.
17.
Arabnia
,
M.
, and
Ghaly
,
W.
, 2010, “
On the Use of Blades Stagger and Stacking in Turbine Stage Optimization
,” ASME Paper No. GT2010-23399.
18.
Goel
,
T.
,
Dorney
,
D. J.
,
Haftka
,
R. T.
, and
Shyy
,
W.
, 2008, “
Improving the Hydrodynamic Performance of Diffuser Vanes via Shape Optimization
,”
Comput. Fluids
,
37
(
6
), pp.
705
723
.
19.
Kim
,
J. H.
, and
Kim
,
K. Y.
, 2011, “
Optimization of Vane Diffuser in a Mixed-Flow Pump for High Efficiency Design
,”
Int. J. Fluid Mach. Syst.
,
4
(
1
), pp.
172
178
.
20.
ANSYS Inc., 2006, “
ANSYS CFX-Solver Theory Guide
,” ANSYS CFX-11.0.
21.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Application
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
22.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
, 1997, “
Turbulence Modeling Validation
,”
Proceedings of the 28th AIAA Fluid Dynamics Conference
,
Snowmass Village, CO
, Paper No. AIAA-1997-2121.
23.
Thakur
,
R.
,
Gropp
,
W.
, and
Toonen
,
B.
, 2005, “
Optimizing the Synchronization Operations in Message Passing Interface One-Sided Communication
,”
Int. J. High Perform. Comput. Appl.
,
19
(
2
), pp.
119
128
.
24.
JMP, 2005, The Statistical Discovery Software, Version 6.0.0, SAS Institute Inc., Cary, NC.
25.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.
26.
Orr
,
M. J. L.
, 1996, “
Introduction to Radial Basis Neural Network
,” Center for Cognitive Science, Edinburgh University, Scotland, UK, http://anc.ed.ac.uk/RBNN/http://anc.ed.ac.uk/RBNN/
27.
Samad
,
A.
, and
Kim
,
K. Y.
, 2009, “
Surrogate Based Optimization Techniques for Aerodynamic Design of Turbomachinery
,”
Int. J. Fluid Mach. Syst.
,
2
(
2
), pp.
179
188
.
28.
MATLAB®, 2004, “
The Language of Technical Computing
,” Release 14, The Math Work Inc.
29.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
, 2005, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
,
41
(
1
), pp.
1
28
.
30.
Samad
,
A.
,
Kim
,
K. Y.
,
Goel
,
T.
,
Haftka
,
R. T.
, and
Shyy
,
W.
, 2008, “
Multiple Surrogate Modeling for Axial Compressor Blade Shape Optimization
,”
J. Propul. Power
,
24
(
2
), pp.
302
310
.
You do not currently have access to this content.