More than two decades ago the first strong experimental results appeared suggesting that turbulent flows might not be asymptotically independent of their initial (or upstream) conditions (Wygnanski et al., 1986, “On the Large-Scale Structures in Two-Dimensional Smalldeficit, Turbulent Wakes,” J. Fluid Mech., 168, pp. 31–71). And shortly thereafter the first theoretical explanations were offered as to why we came to believe something about turbulence that might not be true (George, 1989, “The Self-Preservation of Turbulent Flows and its Relation to Initial Conditions and Coherent Structures,” Advances in Turbulence, W. George and R. Arndt, eds., Hemisphere, New York, pp. 1–41). These were contrary to popular belief. It was recognized immediately that if turbulence was indeed asymptotically independent of its initial conditions, it meant that there could be no universal single point model for turbulence (George, 1989, “The Self-Preservation of Turbulent Flows and its Relation to Initial Conditions and Coherent Structures,” Advances in Turbulence, W. George and R. Arndt, eds., Hemisphere, New York, pp. 1–41; Taulbee, 1989, “Reynolds Stress Models Applied to Turbulent Jets,” Advances in Turbulence, W. George and R. Arndt, eds., Hemisphere, New York, pp. 29–73) certainly consistent with experience, but even so not easy to accept for the turbulence community. Even now the ideas of asymptotic independence still dominate most texts and teaching of turbulence. This paper reviews the substantial additional evidence - experimental, numerical and theoretical - for the asymptotic effect of initial and upstream conditions that has accumulated over the past 25 years. Also reviewed is evidence that the Kolmogorov theory for small scale turbulence is not as general as previously believed. Emphasis has been placed on the canonical turbulent flows (especially wakes, jets, and homogeneous decaying turbulence), which have been the traditional building blocks for our understanding. Some of the important outstanding issues are discussed; and implications for the future of turbulence modeling and research, especially LES and turbulence control, are also considered.

References

References
1.
Hussain
,
A.
, 1983, “
Coherent Structures-Reality and Myth
,”
Phys. Fluids
,
26
, pp.
2816
2850
.
2.
Bevilaqua
,
P. M.
, and
Lykoudis
,
P.
, 1978, “
Turbulence Memory in Self-Preserving Wakes
,”
J. Fluid Mech.
,
89
, pp.
589
606
.
3.
Sreenivasan
,
K. R.
, and
Narasimha
,
R.
, 1982, “
Equilibrium Parameters for Two-Dimensional Turbulent Wakes
,”
Trans. ASME J. Fluids Eng.
,
104
, pp.
167
169
.
4.
Wygnanski
,
I.
,
Champagne
,
F.
, and
Marasli
,
B.
, 1986, “
On the Large-Scale Structures in Two-Dimensional Small Deficit, Turbulent Wakes
,”
J. Fluid Mech.
,
168
, pp.
31
71
.
5.
Townsend
,
A.
, 1976,
Shear Flow Turbulence
,
Cambridge University Press
,
Cambridge, UK
.
6.
Tennekes
,
H.
, and
Lumley
,
J.
, 1972,
A First Course in Turbulence
,
MIT Press
,
Cambridge, MA
.
7.
George
,
W.
, 1989, “
The Self-Preservation of Turbulent Flows and its Relation to Initial Conditions and Coherent Structures
,”
Advances in Turbulence
,
W.
George
and
R.
Arndt
, eds.,
Hemisphere
,
New York
, pp.
1
41
.
8.
Taulbee
,
D.
, 1989, “
Reynolds Stress Models Applied to Turbulent Jets
,”
Advances in Turbulence
,
W.
George
and
R.
Arndt
, eds.,
Hemisphere
,
New York
, pp.
29
73
.
9.
George
,
W.
, and
Arndt
,
R.
, 1989,
Advances in Turbulence
,
Hemisphere
,
New York
.
10.
George
,
W. K.
, 1995, “
Some New Ideas for Similarity of Turbulent Shear Flows
,”
Proceedings of the Symposium on Turbulence, Heat and Mass Transfer
, Lisbon, Portugal, Aug. 9–12 1994, Hanjalic and Pereira, eds.,
Begell House
, pp.
24
49
.
11.
George
,
W. K.
, 1992, “
The Decay of Homogeneous Isotropic Turbulence
,”
Phys. Fluids A
,
4
(
7
), pp.
1492
1509
.
12.
George
,
W.
, 1990, “
Self-Preservation of Temperature Fluctuations in Isotropic Turbulence
,”
Studies in Turbulence
,
C. G. S. T. B.
Gatski
,
S.
Sarkar
, eds.,
Springer Verlag
,
Berlin
, pp.
514
427
.
13.
George
,
W. K.
, and
Gibson
,
M. M.
, 1992, “
The Self-Preservation of Homogeneous Shear Flow Turbulence
,”
Exp. Fluids
,
13
, pp.
229
238
.
14.
Comte-Bellot
,
G.
, and
Corrsin
,
S.
, 1966, “
The use of a Contraction to Improve the Isotropy of Grid-Generated Turbulence
,”
J. Fluid Mech.
,
25
, pp.
657
682
.
15.
Comte-Bellot
,
G.
, and
Corrsin
,
S.
, 1971, “
Simple Eulerian Time Correlation of Full- and Narrow-Band Velocity Signals in Grid-Generated, ‘Isotropic’ Turbulence
,”
J. Fluid Mech.
,
48
, pp.
273
337
.
16.
Warhaft
,
Z.
, and
Lumley
,
J.
, 1978, “
An Experimental Study of Temperature Fluctuations in Grid-Generated Turbulence
,”
J. Fluid Mech.
,
88
, pp.
659
684
.
17.
Rohr
,
J.
,
Itsweire
,
E.
,
Helland
,
K.
, and
Van Atta
,
C.
, 1988, “
An Investigation of the Growth of Turbulence in a Uniform Mean- Shear Flow
,”
J. Fluid Mech.
,
187
, pp.
1
33
.
18.
Gibson
,
M.
, and
Kanellopoulos
,
V.
, 1988, “
Turbulence Measurements in a Nearly Homogeneous Shear Flow
,”
Transport Phenomena in Turbulent Flows
,
M.
Hirat
and
N.
Kasgi
eds., pp.
17
28
.
19.
George
,
W. K.
, and
Castillo
,
L.
, 1997, “
Zero-Pressure Gradient Turbulent Boundary Layer
,”
Appl. Mech. Rev.
,
50
(
12
), pp.
689
729
.
20.
Castillo
,
L.
, and
George
,
W. K.
, 2001, “
Similarity Analysis of Turbulent Boundary Layers with Pressure Gradient: Outer Flow
,”
AIAA J.
,
39
(
1
), pp.
41
47
.
21.
Cannon
,
S.
,
Champagne
,
F.
, and
Glezer
,
A.
, 1993, “
Observations of Large-Scale Structure in Wakes Behind Axisymmetric Bodies
,”
Exp. Fluids
,
14
, pp.
447
450
.
22.
Zhou
,
Y.
, and
Antonia
,
R.
, 1994, “
Effect of Initial Conditions on Characteristics of Turbulent Far Wake
,”
JSME Int. J., Ser. B
,
37
(
4
), pp.
718
725
.
23.
Zhou
,
Y.
, and
Antonia
,
R.
, 1995, “
Memory Effects in a Turbulent Plane Wake
,”
Exp. Fluids
,
19
(
2
), pp.
112
120
.
24.
Boersma
,
G.
,
Brethouwer
,
G.
, and
Nieuwstadt
,
F. T. M.
, 1998, “
A Numerical Investigation of the Effect of the Inflow Conditions on the Self-Similar Region of a Round Jet
,”
Phys. Fluids A
,
10
(
4
), pp.
899
909
.
25.
Rinoshika
,
A.
, and
Zhou
,
Y.
, 2007, “
Effects of Initial Conditions on Wavelet-Decomposed Structures in a Turbulent Far Wake
,”
Int. J. Heat Fluid Flow
,
28
, pp.
948
962
.
26.
Moser
,
R. D.
,
Rogers
,
M. M.
, and
Ewing
,
D. W.
, 1998, “
Self-Similarity of Time-Evolving Plane Wakes
,”
J. Fluid Mech.
,
367
, pp.
255
289
.
27.
Ewing
,
D.
,
George
,
W.
,
Rogers
,
M.
, and
Moser
,
R.
, 2007, “
Two-Point Similarity in Temporally Evolving Plane Wakes
,”
J. Fluid Mech.
,
577
, pp.
287
307
.
28.
Rogers
,
M. M.
, 2005, “
Turbulent Plane Wakes Subjected to Successive Strains
,”
J. Fluid Mech.
,
535
, pp.
215
243
.
29.
Ghosal
,
S.
, and
Rogers
,
M. M.
, 1997, “
A Numerical Study of Self-Similarity in a Turbulent Plane Wake Using Large Eddy Simulation
,”
Phys. Fluids A
,
9
(
6
), pp.
1729
1739
.
30.
Cannon
,
S.
, 1991, “
Large-Scale Structures and the Spatial Evolution of Wakes Behind Axisymmetric Bluff Bodies
,” Ph.D. Thesis, University of Arizona, Tucson, AZ.
31.
Johansson
,
P. B. V.
,
George
,
W. K.
, and
Gourlay
,
M. J.
, 2003, “
Equilibrium Similarity, Effects of Initial Conditions and Local Reynolds Number on the Axisymmetric Wake
,”
Phys. Fluids A
,
15
(
3
), pp.
603
617
.
32.
Johansson
,
P. B. V.
, and
George
,
W. K.
, 2006, “
The Far Downstream Evolution of the High Reynolds Number Axisymmetric Wake Behind a Disk. Part 1. Single Point Statistics
,”
J.Fluid Mech.
,
555
, pp.
363
385
.
33.
Gourlay
,
M. J.
,
Arendt
,
S.
,
Fritts
,
D. C.
, and
Werne
,
J.
, 2001, “
Numerical Modeling of Initially Turbulent Wakes With Net Momentum
,”
Phys. Fluids A
,
13
, pp.
3783
3802
.
34.
Panchepakesan
,
N. R.
, and
Lumley
,
J.
, 1993, “
Turbulence Measurements in Axisymmetric Jets of Air and Helium. Part 1. 34 Air Jet
,”
J. Fluid Mech.
,
246
, p.
197
223
.
35.
Hussein
,
H.
,
Capp
,
S.
, and
George
,
W. K.
, 1994, “
Velocity Measurements in a High Reynolds Number, Momentum Conserving Axisymmetric Turbulent Jet
,”
J. Fluid Mech.
,
258
, pp.
31
75
.
36.
Cater
,
J.
, and
Soria
,
J.
, 2002, “
The Evolution of Round Zero-Net-Mass-Flux Jets
,”
J. Fluid Mech.
,
472
, pp.
167
200
.
37.
Parekh
,
D.
,
Leonard
,
A.
, and
Reynolds
,
W.
, 1988, “
Bifurcating Jets at High Reynolds Numbers
,” Technical Report: Deptartment of Mechanical Engineering, Stanford University, Palo Alto, CA.
38.
Russ
,
S.
, and
Strykowski
,
P.
, 1993, “
Turbulent Structure and Entrainment in Heated Jets: The Effect of Initial Conditions
,”
Phys. Fluids A
,
12
(
12
), pp.
3216
3225
.
39.
Grinstein
,
F.
, 2001, “
Vortex Dynamics and Entrainment in Rectangular Free Jets
,”
J. Fluid Mech.
,
437
, pp.
69
101
.
40.
Grinstein
,
F. F.
,
Glauser
,
M. M.
, and
George
,
W. K.
, 2001, “
Vorticity in Jets
,”
Fluid Vortices
,
S.
Greene
, ed.,
Kluwer
,
Norwell, MA
, pp.
65
88
.
41.
Gilchrist
,
R.
, and
Naughton
,
J.
, 2005, “
Experimental Study of Incompressible Jets With Different Initial Swirl Distributions: Mean Results
,”
AIAA J.
,
43
(
4
), pp.
741
751
.
42.
Fukushima
,
C.
,
Aanen
,
L.
, and
Westerweel
,
J.
, 2000, “
Investigation of the Mixing Process in an Axisymmetric Turbulent Jet using PIV and LIF
,”
Proceedings of the 10th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon
, Portugal.
43.
Ewing
,
D.
,
Frohnapfel
,
B.
,
George
,
W.
,
Pedersen
,
J.
, and
Westerweel
,
J.
, 2007, “
Two-Point Similarity in the Round Jet
,”
J. Fluid Mech.
,
577
, pp.
309
330
.
44.
Mi
,
J.
,
Nobis
,
D. S.
, and
Nathan
,
G. J.
, 2001, “
Influence of Jet Exit Conditions on the Passive Scalar Field of an Axisymmetric Free Jet
,”
J. Fluid Mech.
,
432
, pp.
91
125
.
45.
Xu
,
G.
, and
Antonia
,
R.
, 2002, “
Effect of Different Initial Conditions on a Turbulent Round Free Jet
,”
Exp. Fluids
,
33
(5)
, pp.
677
683
.
46.
Xu
,
G.
, and
Antonia
,
R.
, 2002, “
Effect of Initial Conditions on the Temperature Field of a Turbulent Round Free Jet
,”
Int. Commun. Heat Mas Transfer
,
29
(
8
), pp.
1057
1068
.
47.
Burattini
,
P.
, and
Djendidi
,
L.
, 2004, “
Velocity and Passive Scalar Characteristics in a Round Jet With Grids at the Nozzle Exit
,”
Flow, Turbul. Combust.
,
72
, pp.
199
218
.
48.
Burattini
,
P.
, and
Antonia
,
R.
, 2005, “
Similarity in the Far Field of a Turbulent Round Jet
,”
Phys. Fluids
,
17
, p.
025101
.
49.
Ferdman
,
E.
,
Otugen
,
M. V.
, and
Kim
,
S.
, 2000, “
Effect of Initial Velocity Profile on the Development of Round Jets
,”
J. Propul. Power
,
16
, pp.
676
686
.
50.
George
,
W.
, 1990, “
Governing Equations, Experiments, and the Experimentalist
,”
J. Exp. Therm. Fluid Sci.
,
3
, pp.
557
566
.
51.
Shiri
,
A.
,
George
,
W.
, and
Naughton
,
J.
, 2006, “
An Experimental Study of the Far-Field of Incompressible Swirling Jets
,”
AIAA J.
,
46
(
8
), pp.
2002
2009
.
52.
Morton
,
B.
, 1959, “
Forced Plumes
,”
J. Fluid Mech.
,
2
, pp.
151
163
.
53.
Kotsovinos
,
N.
, and
List
,
E.
, 1977, “
Turbulent Buoyant Jet. Part 1. Integral Properties
,”
J. Fluid Mech.
,
81
, pp.
25
44
.
54.
Baker
,
C. B. T. D.
, and
George
,
W.
, 1982, “
An Analysis of Buoyant Jet Heat Transfer
,”
Proceedings of the 7th International Heat Transfer Conference
,
Munich
, Germany.
55.
Shabbir
,
A.
, and
George
,
W.
, 1993, “
Experiments on a Round Turbulent Buoyant Plume
,”
J. Fluid Mech.
,
275
, pp.
1
32
.
56.
Ewing
,
D.
, 1999, “
Decay of Round Turbulent Jets With Swirl
,”
Proceedings of the 4th International Symposium on Engineering Turbulence Modeling and Experiments
,
Elsvier
, Amsterdam.
57.
Chigier
,
N.
, and
Chervinsky
,
A.
, 1967, “
Experimental Investigation of Swriling Vortex Motion in Jets
,”
Trans. ASME J. Appl. Mech.
,
34
, pp.
443
451
.
58.
Farokhi
,
S.
,
Taghavi
,
R.
, and
Rice
,
E.
, 1989, “
Effect of Initial Swirl Distribution on the Evolution of a Turbulent Jet
,”
AIAA J.
,
27
(
6
), pp.
700
706
.
59.
Shiri
,
A. F.
,
George
,
W. K.
, and
Toutiaei
,
S.
, 2007, “
Evaluation of Closure Hypotheses Using Recent Experimental Data on the Similarity Region of Swirling Jet Flows
,”
Proceedings of 4th Ankara International Aerospace Conference
,
METU Turkey
, Ankara, Sept. 10–12, Paper No. AIAC-2007-051.
60.
Shiri
,
A. F.
,
Toutiaei
,
S.
, and
George
,
W. K.
, 2007, “
Turbulent Flow Structure in the Similarity Region of a Swirling Jet
,”
Proceedings of 11th EUROMECH European Turbulence Conference
,
Porto
, Portugal, Jun. 25–28, pp.
471
473
.
61.
Bremhorst
,
K.
, and
Hollis
,
P.
, 1990, “
Velocity Field of an Axisymmetric Pulsed, Subsonic Air Jet
,”
AIAA J.
,
28
, pp.
2043
2049
.
62.
Batchelor
,
G. K.
, and
Townsend
,
A. A.
, 1947, “
Decay of Vorticity in Isotropic Turbulence
,”
Proc. R. Soc. London Ser. A
,
190
(1023)
, pp.
534
550
.
63.
von Kármán
,
T.
, and
Howarth
,
L.
, 1938, “
On the Statistical Theory of Isotropic Turbulence
,”
Proc. R. Soc. London Ser. A
,
164
(917)
, pp.
192
215
.
64.
Kistler
,
A.
, and
Vrebalovich
,
T.
, 1966, “
Grid Turbulence at Large Reynolds Number
,”
J. Fluid Mech.
,
26
, pp.
37
47
.
65.
Reynolds
,
W.
, 1976, “
Computation of Turbulent Flows
,”
Ann. Rev. Fluid Mech.
,
8
, pp.
183
208
.
66.
Batchelor
,
G.
, 1953,
Homogeneous Turbulence
,
Cambridge University Press
,
Cambridge, UK
.
67.
Monin
,
Y.
, and
Yaglom
,
Y.
, 1972,
Statistical Fluid Mechanics, Vol II
,
MIT Press
,
Cambridge, MA
.
68.
Yeung
,
P.
,
Brasseur
,
J.
, and
Wang
,
Q.
, 1995, “
Dynamics of Direct Large-Small Scale Couplings in Coherently Forced Turbulence: Concurrent Physical- and Fourier-Space Views
,”
J. Fluid Mech.
,
283
(
4
), pp.
43
95
.
69.
Citriniti
,
J. H.
, and
George
,
W. K.
, 1997, “
The Reduction of Spatial Aliasing by Long Hot-Wire Anemometer Probes
,”
Exp. Fluids
,
23
, pp.
217
224
.
70.
Wang
,
H.
, and
George
,
W. K.
, 2002, “
The Integral Scale in Homogeneous Isotropic Turbulence
,”
J. Fluid Mech.
,
459
, pp.
429
443
.
71.
Batchelor
,
G.
, 1948, “
Energy Decay and Self-Preserving Correlation Functions in Isotropic Turbulence
,”
Q. Appl. Math.
,
6
, pp.
97
116
.
72.
Batchelor
,
G.
, and
Townsend
,
A.
, 1948, “
Decay of Isotropic Turbulence in the Initial Period
,”
Proc. R. Soc. London Ser. A
,
193
, pp.
539
558
.
73.
Mills
,
R.
,
Kistler
,
A.
,
O’Brien
,
V.
, and
Corrsin
,
S.
, 1958, “
Turbulence and Temperature Fluctuations behind a Heated Grid
,”
Johns Hopkins University
, NACA Tech. Note No. 4288.
74.
Frenkiel
,
F. N.
, and
Klebanoff
,
P.
, 1971, “
Statistical Properties of Velocity Derivatives in a Turbulent Field
,”
J. Fluid Mech.
,
48
, pp.
183
208
.
75.
Bennett
,
J.
, and
Corrsin
,
S.
, 1978, “
Small Reynolds Number Nearly Isotropic Turbulence in a Straight Duct and Contraction
,”
Phys. Fluids
,
21
, pp.
2129
2141
.
76.
Kolmogorov
,
A.
, 1963, “
A Refinement of Previous Hypothesis Concerning the Local Structure of Turbulence in a Viscous Incompressible Fluid at High Reynolds Number
,”
J. Fluid Mech.
,
13
, pp.
82
85
.
77.
Kolmogorov
,
A.
, 1941, “
The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers
,”
C. R. Akad. Sci. SSSR
,
30
, p.
301
.
78.
Tavoularis
,
S.
, and
Karnik
,
U.
, 1989, “
Further Experiments on the Evolution of Turbulent Stresses and Scales in Uniformly Sheared Turbulence
,”
J. Fluid Mech.
,
204
, pp.
457
478
.
79.
Tavoularis
,
S.
, 1985, “
Asymptotic Laws for Transversely Homogeneous Turbulent Shear Flows
,”
Phys. Fluids
,
28
, pp.
999
1001
.
80.
Tavoularis
,
S.
, and
Corrsin
,
S.
, 1981, “
Experiments in Nearly Homogenous Turbulent Shear Flow With a Uniform Mean Temperature Gradient. Part 1
,”
J. Fluid Mech.
,
104
, pp.
311
347
.
81.
Harris
,
V.
,
Grahm
,
J.
, and
Corrsin
,
S.
, 1977, “
Further Experiments in Nearly Homogeneous Shear Flow
”.
J. Fluid Mech.
,
81
, pp.
657
687
.
82.
Wray
,
A.
, 1998, “
Decaying Isotropic Turbulence
,”
AGARD Advis. Rep.
,
345
, pp.
63
64
.
83.
de Bruyn Kops
,
S.
, and
Riley
,
J.
, 1999, “
Direct Numerical Simulation of Laboratory Experiments in Isotropic Turbulence
,”
Phys. Fluids A
,
10
, pp.
2125
2127
.
84.
Wang
,
H.
,
Gamard
,
S.
,
Sonnenmeier
,
J. R.
, and
George
,
W. K.
, 2000, “
Evaluating DNS of Isotropic Turbulence using Similarity Theory
,”
Proceedings of the ICTAM 2000
,
Chicago
, IL, 27 Aug.–1 Sept. 2000.
85.
George
,
W.
,
Wang
,
H.
,
Wollblad
,
C.
, and
Johansson
,
T.
, 2001, “
Homogeneous Turbulence and its Relation to Realizable Flows
,”
Proceedings of the 14th Australasian Fluid Mechanics Conference
,
Adelaide, S.
Australia, Dec. 2001, pp.
41
48
.
86.
Antonia
,
R.
,
Smalley
,
R.
,
Zhou
,
T.
,
Anselmet
,
F.
, and
Danaila
,
L.
, 2003, “
Similarity of Energy Structure Functions in Decaying Homogeneous Isotropic Turbulence
,”
J. Fluid Mech.
,
487
, pp.
245
269
.
87.
Antonia
,
R.
, and
Orlandi
,
P.
, 2004, “
Similarity of Decaying Isotropic Turbulence With a Passive Scalar
,”
J. Fluid Mech.
,
505
, pp.
123
151
.
88.
Lavoie
,
P.
,
Burattini
,
P.
,
Djendidi
,
L.
, and
Antonia
,
R.
, 2005, “
Effect of Initial Conditions on Decaying Grid Turbulence at Low Rλ
,”
Exp. Fluids
,
39
, pp.
865
874
.
89.
Burattini
,
P.
,
Lavoie
,
P.
,
Agrawal
,
A.
,
Djendidi
,
L.
, and
Antonia
,
R.
, 2006, “
Power Law of Decaying Homogeneous Isotropic Turbulence at Low Reynolds Number
,”
Phys. Rev. E
,
73
, p.
066304
.
90.
Hurst
,
D.
, and
Vasillicos
,
J.
, 2007, “
Scalings and Decay of Fractal-Generated Turbulence
,”
Phys. Fluids
,
19
, p.
035103
.
91.
Lavoie
,
P.
,
Djendidi
,
L.
, and
Antonia
,
R.
, 2007, “
Effects of Initial Conditions in Decaying Turbulence Generated by Passive Grids
,”
J. Fluid Mech.
,
585
, pp.
395
420
.
92.
George
,
W. K.
, and
Wang
,
H.
, 2002, “
The Spectral Transfer in Isotropic Turbulence
,”
Proceedings of the IUTAM Symposium On Reynolds Number Scaling in Turbulent Flow
,
Princeton, NJ
, Sept. 11–13,
Kluwer, MA
.
93.
Kang
,
H.
,
Chester
,
S.
, and
Meneveau
,
C.
, 2003, “
Decaying Turbulence in an Active-Grid-Generated Flow and Comparisons With Large-Eddy Simulation
,”
J. Fluid Mech.
,
480
, pp.
129
160
.
94.
Hurst
,
D.
, 2006, “
Wind Tunnel Experiments in Fractal Induced Turbulence
,” Ph. D. Thesis, Deptartmemt of Aeronautics, Imperial College of London, London, UK.
95.
Seoud
,
R.
, and
Vassilicos
,
J.
, 2007, “
Dissipation and Decay of Fractal-Generated Turbulence
,”
Phys. Fluids
,
19
, p.
105108
.
96.
George
,
W. K.
, and
Wang
,
H.
, 2009, “
The Exponential Decay of Homogenous Turbulence
,”
Phys. Fluids
,
21
, p.
025108
.
97.
Krogstad
,
P.
, and
Davidson
,
P.
, 2011, “
Freely Decaying Homogeneous Turbulence Generated by Multi-Scale Grids
,”
J. Fluid Mech.
,
680
, pp.
417
434
.
98.
Valente
,
P.
, and
Vassilicos
,
J.
, 2011, “
Dependence of Decaying Homogeneous Isotropic Turbulence on Inflow Conditions
,”
Phys. Lett. A
,
376
, pp.
510
514
.
99.
Loitsianskii
,
L.
, 1939, “
Some Basic Laws for Isotropic Turbulence
,” Tech. Report 440, Central Aero- Hydrodynamic Institute, Moscow, (translated as NACA Tech. Memo 1079).
100.
Vassilicos
,
J.
, 2011, “
An Infinity of Possible Invariants for Decaying Homogeneous Turbulence
,”
Phys. Lett. A
,
375
, p.
1010
1019
.
101.
Gustafsson
,
J.
, and
George
,
W.
, 2011, “
Energy Spectra at Low Wavenumbers in Homogeneous Incompressible Turbulence
,”
Phys. Lett. A
,
375
, pp.
2850
2853
.
102.
Nelkin
,
M.
, 1996, “
Universality and Scaling in Fully Developed Turbulence
,”
Adv. Phys.
,
43
, pp.
143
181
.
103.
George
,
W.
, and
Tutkun
,
M.
, 2009, “
Mind the Gap: A Guideline for Large Eddy Simulation
,”
Philos. Trans. R. Soc. A
,
367
, pp.
2839
2847
.
104.
Champagne
,
F.
, 1978, “
The Fine-Scale Structure of the Turbulent Velocity Field
,”
J. Fluid Mech.
,
86
, pp.
67
108
.
105.
Tennekes
,
H.
,
and Wyngaard
,
J.
, 1972, “
The Intermittent Small-Scale Structure of Turbulence: Data-Processing Hazards
,”
J. Fluid Mech.
,
55
, pp.
93
103
.
106.
Lumley
,
J.
, 1965, “
Interpretation of Time Spectra in High Intensity Shear Flow
,”
Phys. Fluids
,
8
, pp.
1056
1063
.
107.
Burattini
,
P.
,
Lavoie
,
P.
, and
Antonia
,
R.
, 2008, “
Velocity Derivative Skewness in Isotropic Turbulence and its Measurement with Hot Wires
,”
Exp. Fluids
,
45
, pp.
523
535
.
108.
Mazellier
,
N.
, and
Vassilicos
,
J.
, 2010, “
Turbulence Without Richardson-Kolmogorov Cascade
,”
Phys. Fluids
,
22
, p.
075101
.
109.
Gamard
,
S.
, and
George
,
W.
, 2000, “
Reynolds Number Dependence of Energy Spectra in the Overlap Region of Isotropic Turbulence
,”
J. Flow Turbul. Combust.
,
63
, pp.
443
477
.
110.
Slessor
,
M. D.
,
Bond
,
C. L.
, and
Dimotakis
,
P. E.
, 1998, “
Turbulent Shear-Layer Mixing at High Reynolds Numbers: Effects of Inflow Conditions
,”
J. Fluid Mech.
,
376
, pp.
115
138
.
111.
Ristorcelli
,
J. R.
, and
Clark
,
T. T.
, 2004, “
Rayleigh-Taylor Turbulence: Self-Similar Analysis and Direct Numerical Simulations
,”
J. Fluid Mech.
,
507
, pp.
213
253
.
112.
Ramaprabhu
,
P.
,
Dimonte
,
G.
, and
Andrews
,
M.
, 2005, “
A Numerical Study of the Influence of Initial Perturbation on the Turbulent Rayleigh-Taylor Instability
,”
J. Fluid Mech.
,
536
, pp.
285
319
.
113.
Mueschke
,
N.
,
Andrews
,
M.
, and
Schilling
,
O.
, 2006, “
Experimental Characterization of Initial Conditions and Spatio-Temporal Evolution of a Small-Atwood-Number Rayleigh-Taylor Mixing Layer
,”
J. Fluid Mech.
,
567
, pp.
27
63
.
114.
Youngs
,
D.
, 2008,“
Turbulent Mixing due to Rayleigh-Taylor Instability
,”
Bull. Am. Phys. Soc.
,
53
(
15
), p.
123102
.
115.
Arndt
,
R.
, and
Wosnik
,
M.
, 2006, “
Experimental and Numerical Investigation of Large Scale Structures in Cavitating Wakes
,”
Proceedings of the 36th AIAA Fluid Dynamics Conference and Exhibit
, AIAA Paper No. 2006–3046.
116.
Cal
,
R.
,
Brzek
,
B.
,
Johansson
,
T.
, and
Castillo
,
L.
, 2006, “
Upstream Condition Effects on Rough Favorable Pressure Gradient Turbulent Boundary Layers
,”
Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno
, NV, Jan. 9–12, AIAA Paper No. AIAA-2006-3271.
117.
Druault
,
P.
,
Lardeau
,
S.
,
Bonnet
,
J.-P.
,
Coiffet
,
F.
,
Delville
,
J.
,
Lamballais
,
J. F. L. J.
, and
Perret
,
L.
, 2004, “
A Methodology for the Generation of Realistic 3-D Turbulent Unsteady Inlet Conditions for Les Computations
,”
AIAA J.
,
42
(
3
), pp.
447
456
.
You do not currently have access to this content.