Although flows of fluids in curved channels belong to a classical problem of fluid dynamics, most publications are restricted to investigations of flows in tube coils, or in single bends. This paper presents experimental and numerical (CFD) results concerning Newtonian flows in a set of multiple S-type bends of various orientations. Investigations were conducted for a wide range of Re values (0–3500) and for a significant curvature ratio lying between 0.05 and 0.29, which corresponds to De value falling within the range 0.02–1200. A coiled tube was also examined and treated as the reference geometry. It was shown, that despite a completely different velocity pattern, the nonlinear dependence of normalized flow resistance of wavy tubes and coiled tube of the same curvature ratio overlap within a significant range of De. A novel, close phenomenological formula to estimate the nonlinear flow resistance of tortuous tube in a wide range of De was proposed and compared with those in the literature. The conditions were also determined in which the De might be the only dimensionless group that characterizes such flows.

References

References
1.
Berger
,
S. A.
,
Talbot
,
L.
, and
Yao
,
L. S
, 1983, “
Flow in Curved Pipe
,”
Ann. Rev. Fluid Mech.
,
15
, pp.
461
512
.
2.
Ali
,
S.
, 2001, “
Pressure Drop Correlations for Flow Through Regular Helical Coil Tubes
,”
Fluid Dynamics Res.
,
28
(
4
), pp.
295
310
.
3.
K. E.
Lee
,
K. H.
Parker
,
C. G.
Caro
, and
S. J.
Sherwin
, 2008, “
The Spectral/Hp Element Modelling of Steady Flow in Non-Planar Double Bends
,”
Int. J. Numer. Meth. Fluids
,
57
(
5
), pp.
519
529
.
4.
B.
Timité
,
M.
,
Jarrahi
,
C.
,
Castelain
, and
H.
,
Peerhossaini
, 2009, “
Pulsating Flow for Mixing Intensification in a Twisted Curved Pipe
,”
J. Fluids Eng.
,
131
(
12
), p.
121104
.
5.
Perktold
,
K.
,
Florian
,
H.
, and
D.
,
Hilbert
,
1987, “
Analysis of Pulsatile Blood Flow: A Carotid Siphon Mode
,”
J. Biomed. Eng.
,
9
(
1
), pp.
46
53
.
6.
Banerjee
,
R. K.
,
Cho
,
Y. I.
, and
Back
,
L. H.
, 1993, “
Numerical Studies of Three-Dimensional Arterial Flows in Reverse Curvature Geometry: Part I — Peak Flow
,”
J. Biomech. Eng.
,
115
(
3
), pp.
316
326
.
7.
Hoogstraten
,
H. W.
,
Kootstra
,
J. G.
,
Hillen
,
B.
,
Krijger
,
J. K. B.
, and
Wensing
,
P. J. W.
, 1996, “
Numerical Simulation of Blood Flow in Artery With Two Successive Bends
,”
J. Biomech.
,
29
(
8
), pp.
1075
1083
.
8.
Leong
,
F. Y.
,
Smith
,
K. A.
, and
Wang
,
C.-H.
, 2009, “
Secondary Flow Behavior in a Double Bifurcation
,”
Phys. Fluids
,
21
(
4
), p.
043601
.
9.
Cassot
,
F.
,
Zagzoule
,
M.
, and
Marc-Vergnes
,
J. P.
, 2000, “
Hemodynamic Role of the Circle of Willis in Stenoses of Internal Carotid Arteries. An Analytical Solution of a Linear Model
,”
J. Biomech.
,
33
(
4
), pp.
395
405
.
10.
Gabryœ
,
E.
,
Rybaczuk
,
M.
, and
Kędzia
,
A.
, 2006, “
Blood Flow Simulation Through Fractal Models of Circulatory System
,”
Chaos Solitons Fractals
,
27
(
1
), pp.
1
7
.
11.
Piechnik
,
S.
,
Cieslicki
,
K.
,
Cieśla
,
D.
, and
Czosnyka
,
M.
, 2002, “
Problems in Application of Purely Linear Models in Cerebral Circulation
,”
J. Biomech.
,
35
(
4
), pp.
553
554
.
12.
Cieslicki
,
K.
, and
Cie[acute]sla
,
D.
, 2005, “
Investigations of Flow and Pressure Distributions in Physical Model of the Circle of Willis
,”
J Biomech.
,
38
(
11
), pp.
2302
2310
.
13.
Chung
,
E. M. L.
,
Hague
,
J. P.
,
Chanrion
,
M.-A.
, and
Ramnarine Kumar
,
V.
, 2010, “
Katsogridakis Emmanuel; and Evans D H.: Embolus Trajectory Through a Physical Replica of the Major Cerebral Arteries
,”
Stroke
,
41
(
4
), pp.
647
52
.
14.
Eustice
,
J.
, 1910, “
Flow of Water in Curved Pipe
,”
Proc. R. Soc. London, Ser. A
,
84
, pp.
107
118
.
15.
Dean
,
W. R.
, 1928, “
The Streamline Motion of Fluid in a Curved Pipe
,”
Philos. Mag.
,
5
, pp.
673
695
.
16.
Kubair
,
V.
,
Varrier
,
C. B. S.
, 1962, “
Pressure Drop for Liquid Flow in Helical Coils
,”
Trans. Indian Inst. Chem. Eng.
,
14
, pp.
93
97
.
17.
Schmidt
,
E. F.
, 1967, “
Warmeubergang und Druckverlust in Rohrschlangen
,”
Chem. Eng. Technol.
,
13
, pp.
781
789
.
18.
Srinivasan
,
P. S.
,
Nandapurkar
,
S. S.
, and
Holland
,
F. A.
, 1968, “
Pressure Drop and Heat Transfer in Coils
,”
Chem. Eng. (London)
,
218
, pp.
113
119
.
19.
Tarbell
,
J. M.
, and
Samuels
,
M. R.
, 1973, “
Momentum and Heat Transfer in Helical Coils
,”
Chem. Eng. J.
,
5
(
2
), pp.
117
127
.
20.
Barua
,
S. N.
, 1963, “
On Secondary Flow in Stationary Curved Pipes
,”
Q. J. Mech. Appl. Math.
,
16
(
1
), pp.
61
77
.
21.
Mori
,
Y.
, and
Nakayama
,
W.
, 1967, “
Study on Forced Convective Heat Transfer in Curved Pipes
,”
Int. J. Heat Mass Transf.
,
10
(
1
), pp.
37
59
.
22.
Ito
,
H.
, 1969, “
Laminar Flow in Curved Pipes
,”
Z. Angew. Math. Mech.
,
49
(
11
), pp.
653
663
.
23.
Collins
,
W. M.
, and
Dennis
,
S. C. R.
, 1975, “
The Steady Motion of a Viscous Fluid in a Curved Tube
,”
Q. J. Mech. Appl. Math.
,
28
(
2
), pp.
133
156
.
24.
Van Dyke
,
M.
, 1978, “
Extended Stokes Series: Laminar Flow through a Loosely Coiled Pipe
,”
Journal of Fluid Mech.
,
86
, pp.
129
145
.
25.
Yanase
,
S.
,
Goto
,
N.
, and
Yamamoto
,
K.
, 1989, “
Dual Solutions of the Flow Through a Curved Tube
,”
Fluid Dyn. Res.
,
5
(
3
), pp.
191
201
.
26.
Topakoglu
,
H. C.
, 1967, “
Steady Laminar Flows of an Incompressible Viscous Fluid in Curved Pipes
,”
J. Math. Mech.
,
16
(
12
), pp.
1321
1337
.
27.
Siggers
,
J. H.
, and
Waters
,
S. L.
, 2005, “
Steady Flows in Pipes With Finite Curvature
,”
Phys. Fluids
,
17
(
7
), p.
077102
.
28.
White
,
C. M.
, 1929, “
Streamline Flow Through Curved Pipes
,”
Proc. Roy. Soc.
,
123
(
792
), pp.
645
663
.
29.
Verkaik
,
A. C.
,
Beulen
,
B. W. A. M. M.
,
Bogaerds
,
A. C. B.
,
Rutten
,
M. C. M.
, and
van de Vosse
,
F. N.
, 2009, “
Estimation of Volume Flow in Curved Tubes Based on Analytical and Computational Analysis of Axial Velocity Profiles
,”
Phys. Fluids
,
21
(
2
), p.
0423602
.
30.
Dennis
,
S. C. R.
, 1980, “
Calculation of the Steady Flow Through a Curved Tube Using a New Finite Difference Method
,”
J. Fluid Mech.
99
(
3
), pp.
449
467
.
You do not currently have access to this content.