The development of elastomeric face seals is imperative for NASA’s manned space flight program. Lacking in the development of state-of-the-art space seals was a technique for predicting the performance of candidate designs prior to experimental characterization. To this end, a physics-based model for compressible permeation in elastomeric face seals was developed to provide a predictive methodology for designers and researchers. In this novel approach for seal research, compressibility effects and the dependence of permeability on pressure was retained. Two independent permeation parameters arose from an exact, analytical solution to the one-dimensional permeation transport equations. The application of the derived transport equations and the developed permeability coefficients resulted in a noteworthy and practical tool for seal researchers to predict the leak rate of alternative geometries. For an example in the methodology, the characterization of a candidate space seal material, silicone elastomer S0383-70, was performed. Results illustrated the model’s capability for capturing the permeation leak rate of elastomeric seals for various pressure differentials.

References

References
1.
Lewis
,
J. L.
,
Carroll
,
M. B.
,
Morales
,
R. H.
,
Thang
,
D. L.
, and National Aeronautics and Space Administration, Washington, D.C., 2002, “
Androgynous, Reconfigurable Closed Loop Feedback Controlled Low Impact Docking System With Load Sensing Electromagnetic Capture Ring
,” United States of America Patent No. 6,354,540.
2.
National Aeronautics and Space Administration, 2008. “
Project Technical Requirements Specification for the Low Impact Docking System (LIDS) Government Furnished Equipment(GFE)
,” Report No. JSC-63686 Rev A.
3.
National Aeronautics and Space Administration, 2007, “
Standard Materials and Processes Requirements for Spacecraft
,” Report No. NASA-STD-(I)-6016.
4.
Parker Hannifin Corporation
,
Parker O-Ring Handbook
, (
Parker Hannifin Corporation, Cleveland
,
Ohio
, 2001).
5.
Garafolo
,
N. G.
,
Bastrzyk
,
M. B.
, and
Daniels
,
C. C.
, 2010, “
The Effects of Atomic Oxygen on the Sealing and Mechanical Performance of an Elastomer Seal
,”
Proceedings of the 48th AIAA Aerospace Sciences Meeting, Report No. AIAA 2010-1440
.
6.
Daniels
,
C. C.
,
de Groh
, III,
H.
,
Dunlap
,
P. H.
,
Finkbeiner
,
J. R.
,
Steinetz
,
B. M.
,
Bastrzyk
,
M. B.
,
Oswald
,
J. J.
,
Banks
,
B. A.
,
Dever
,
J. A.
, and
Miller
,
S. K.
and
Waters
,
D. L.
, 2007, “
Characteristics of Elastomer Seals Exposed to Space Environments
,”
Proceedings of the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Report No. AIAA 2007-5741
.
7.
Daniels
,
C. C.
,
Garafolo
,
N. G.
,
Bastrzyk
,
M. B.
, and
Smith
,
I. M.
, 2012, “
Evaluation of a Novel Seal for Space Applications
,”
AIAA J.
,
49
(
1
), pp.
83
90
.
8.
Smith
,
I. M.
,
Daniels
,
C. C.
,
Dunlap
,
P. H.
, and
Steinetz
,
B. M.
, 2008, “
Performance of Sub-Scale Docking Seals Under Simulated Temperature Conditions
,”
Proceedings of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Report No. AIAA 2008-4713
.
9.
Garafolo
,
N. G.
, and
Daniels
,
C. C.
, 2010, “
An Experimental Investigation of the Leak Rate Performance of a Subscale Candidate Elastomer Candidate Docking Seal
,”
Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Report No. AIAA 2010-6907
.
10.
Daniels
,
C. C.
,
Oswald
,
J. J.
,
Bastrzyk
,
M. B.
,
Smith
,
I. M.
,
Patrick H. Dunlap
,
J.
, and
Steinetz
,
B. M.
, 2007, “
Experimental Investigation of Elastomer Docking Seal Compression Set, Adhesion, and Leakage
,”
Proceedings of the AIAA Space 2007 Conference and Exposition, Report No. AIAA-2007-6197
.
11.
Wasowski
,
J. L.
,
Penney
,
N.
,
Garafolo
,
N. G.
, and
Daniels
,
C. C.
, 2009, “
Leak Rates of a Candidate Main Interface Seal at Selected Temperatures
,”
Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Report No. AIAA 2009-5320
.
12.
Ho
,
C. K.
and
Webb
,
S. W.
, eds., 2006,
Gas Transport in Porous Media
,
Springer
,
New York
.
13.
Carpenter
,
A. S.
, and
Twiss
,
D. F.
, 1940, “
Measuring the Permeability of Rubber to Various Gasses
,”
Rubber Chem. Technol.
12
(
2
), pp.
326
347
.
14.
Fick
,
A.
, 1855, “
Ueber Diffusion (On Diffusion)
,”
Poggendorff’s Annel. Physik.
,
94
, pp.
59
83
.
15.
Fick
,
A.
, 1855, “
On Liquid Diffusion
,”
Philos. Mag.
,
10
, pp.
30
39
.
16.
Zhang
,
H.
, 2006, “
The Permeability Characteristics of Silicone Rubber
,”
Proceedings of 2006 SAMPE Fall Technical Conference
.
17.
Darcy
,
H.
, 1856, “
Détermination des lois d’écoulement de l’eau á travers le sable
,”
Les Fontaines Publiques de al Ville de Dijon
,
Victor Dalmont
,
Paris
, pp.
590
594
.
18.
Collins
,
R. E.
,
Flow of Fluids Through Porous Materials
(
Reinhold
,
New York
, 1961).
19.
Scheidegger
,
A. E.
, 1974,
The Physics of Flow Through Porous Media
,
3rd ed.
,
University of Toronto Press
,
Toronto
.
20.
Bear
,
J.
,
Dynamics of Fluids in Porous Media
(
Dover
,
New York
, 1988).
21.
Whitaker
,
S.
, 1986, “
Flow in Porous Media I: A Theoretical Derivation of Darcy’s Law
,”
Transport in Porous Media
,
1
, pp.
3
25
.
22.
Klinkenberg
,
L. J.
, 1941, “
The Permeability of Porous Media to Liquids and Gases
,” Drill. & Prod. Prac., American Petroleum Institute, pp.
200
213
.
23.
Webb
,
S. W.
, 1996, “
Gas-Phase Diffusion in Porous Media—Evaluations of an Advective-Dispersive Formulation and the Dusty-Gas Model Including Comparison to Data for Binary Mixtures
,” Sandia National Laboratories, Tech. Report No. SAND96-1197, UC-403.
24.
Hubbert
,
M. K.
, 1940, “
The Theory of Ground-Water Motion
,”
Geology
,
48
(
8
), pp.
785
944
.
25.
Hansen
,
F.
, 1958, “
Approximations for the Thermodynamic and Transport Properties of High-Temperature Air
,” National Advisory Committee for Aeronautics, Technical No. 4150.
26.
Polyanin
,
A. D.
, and
Zaitsev
,
V. F.
, 2003,
Handbook of Exact Solutions for Ordinary Differential Equations
,
2nd ed.
,
Chapman and Hall
,
London
.
27.
Garafolo
,
N. G.
, and
Daniels
,
C. C.
, 2012, “
The Mass Point Leak Rate Technique With Uncertainty Analysis
,” Res. Nondestruct. Eval. (accepted).
28.
Garafolo
,
N. G.
, and
Daniels
,
C. C.
, 2010, “
Comprehensive Mass Point Leak Rate Technique. Part I: Methodology with Uncertainty and Experimental Error Analysis
,”
JSNDI/ASNT Fourth Japan—US Symposium on Emerging NDE Capabilities for a Safer World
.
29.
Daniels
,
C. C.
, and
Garafolo
,
N. G.
, 2010, “
Comprehensive Mass Point Leak Rate Technique. Part II: Application of Methodology and Variable Influences
,”
JSNDI/ASNT Fourth Japan—US Symposium on Emerging NDE Capabilities for a Safer World
.
30.
Moore
,
P. O.
,
Jackson
, Jr.
,
,
C. N.
, and
Sherlock
,
C. N.
, eds., 1998,
Nondestructive Testing Hand-Book, Leak Testing
,
3rd
ed.,
American Society for Nondestructive Testing, Inc.
,
Columbus, Ohio
, Vol.
1
.
You do not currently have access to this content.