Time resolved two-dimensional particle image velocimetry (2DPIV) experiments have been conducted to contribute to the understanding of the physics governing the suppression mechanism of cavity flow self-sustained oscillations by means of high frequency excitation of the cavity shear layer. High frequency excitation was introduced by the spanwise coherent vortex shedding in the wake of a cylindrical rod positioned just upstream the cavity entrance, at the edge of the incoming boundary layer. The effectiveness of this suppression was demonstrated for a cavity having the length-to-depth ratio equal to three, in incompressible flow. The spatial and time resolved PIV measurements of the whole flow field in the plane normal to the cavity floor, linear stability analysis of the measured shear layer mean velocity profiles, and preliminary PIV measurements in a plane parallel to the cavity allowed us to offer a better insight into the involved physical mechanisms in suppressing cavity self-sustained oscillations.

References

References
1.
Rossiter
,
J. E.
, 1966, “
Wind Tunnel Experiments on the Flow Over Rectangular Cavities at Subsonic and Transonic Speeds
,” Technical Report No. 3438, Aeronautical Research Council Reports and Memoranda, London.
2.
Gharib
,
M.
,
and Roshko
,
A.
, 1987, “
The Effect of Flow Oscillations on Cavity Drag
,”
J. Fluid Mech.
,
177
, pp.
501
530
.
3.
Sarohia
,
V.
, 1977, “
Experimental Investigation of Oscillations in Flows Over Shallow Cavities
,”
AIAA J.
,
15
, pp.
984
991
.
4.
Rowley
,
C. W.
, and
Williams
,
D. R.
, 2006, “
Dynamics and Control of High-Reynolds-Number Flow Over Open Cavities
,”
Annu. Rev. Fluid Mech.
,
38
, pp.
251
276
.
5.
Cattafesta
,
L.
,
Williams
,
D. R.
,
Rowley
,
C. W.
, and
Alvi
,
F.
, 2003, “
Review of Active Control of Flow-Induced Cavity Resonance
,” AIAA Paper No. 2003-3567.
6.
McGrath
,
S. F.
, and
Shaw
,
L. L.
, 1996, “
Active Control of Shallow Cavity Acoustic Resonance
,” AIAA Paper No. 96-1949.
7.
Shaw
,
L. L.
, 1998, “
Active Control for Cavity Acoustics
,” AIAA paper No. 98-2347.
8.
Stanek
,
M. J.
,
Raman
,
G.
,
Kibens
,
V.
,
Ross
,
J. A.
,
Odedra
,
J.
, and
Peto
,
J. W.
, 2001, “
Suppression of Cavity Resonance Using High Frequency Forcing—The Characteristics Signature of Effective Devices
,” AIAA Paper No. 2001-2128.
9.
Stanek
,
M. J.
,
Raman
,
G.
,
Ross
,
J. A.
,
Odedra
,
J.
,
Peto
,
J.
,
Alvi
,
F.
, and
Kibens
,
V.
, 2003, “
High Frequency Acoustic Suppression—The Mystery of the Rod-in-Crossflow Revealed
,” AIAA Paper No. 2003-0007.
10.
Stanek
,
M. J.
,
Visbal
,
M. R.
,
Rizzetta
,
D. P.
,
Rubin
,
S. G.
, and
Khosla
,
P. K.
, 2007, “
On a Mechanism of Stabilizing Turbulent Free Shear Layers in Cavity Flows
,”
Comput. Fluids
,
36
, pp.
1621
1637
.
11.
Smith
,
B.
,
Welteren
,
T.
,
Maines
,
B.
,
Shaw
,
L,. Stanek, M.
, and
Grove
,
J.
, 2002, “
Weapons Bay Acoustic Suppression From Rod Spoilers
,” AIAA Paper No. 2002-0662.
12.
Ukeiley
,
L.
,
Ponton
,
M. K.
,
Seiner
,
J. M.
, and
Jansen
,
B.
, 2002, “
Suppression of Pressure Loads in Cavity Flows
,” AIAA Paper No. 2002-0661.
13.
Panickar
,
P.
, and
Raman
,
G.
, 2008, “
Cavity Resonance Suppression Using High Frequency Excitation: The Mystery of the Cylinder-in-Crossflow Revisited
,” AIAA Paper No. 2008-2853.
14.
Sarpotdar
,
S.
,
Panickar
,
P.
, and
Raman
,
G.
, 2010, “
Stability of a Hybrid Mean Velocity Profile and Its Relevance to Cavity Resonance Suppression
,”
Phys. Fluids
22
, p.
076101
.
15.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
, 2007,
Particle Image Velocimetry—A Practical Guide
,
Springer
,
Berlin
.
16.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
, 1999, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.
17.
Haigermoser
,
C.
,
Vesely
,
L.
,
Novara
,
M.
, and
Onorato
,
M.
, 2008, “
A Time Resolved Particle Image Velocimetry Investigation of a Cavity Flow With a Thick Incoming Turbulent Boundary Layer
,”
Phys. Fluids
,
20
, p.
105101
.
18.
Tam
,
C. K. W.
, and
Block
,
P. J. W.
, 1978, “
Tones and Pressure Oscillations Induced by Flow Over Rectangular Cavities
,”
J. Fluid Mech.
,
89
, pp.
373
399
.
19.
Chatellier
,
L.
,
Laumonier
,
J.
, and
Gervais
,
Y.
, 2006, “
Theoretical and Experimental Investigations of Low Mach Number Turbulent Cavity Flows
,”
Exp. Fluids
,
36
, pp.
728
740
.
20.
Rockwell
,
D.
, and
Naudascher
,
E.
, 1978, “
Review: Self-Sustained Oscillations of Flow Past Cavities
,”
ASME J. Fluids Eng.
,
100
, pp.
152
165
.
21.
Drazin
,
P. G.
, and
Reid
,
W. H.
, 1981,
Hydrodynamical Instability
,
Cambridge University Press
,
Cambridge
.
22.
Howe
,
M. S.
, 1997, “
Low Strouhal Number Instabilities of Flow Over Apertures and Wall Cavities
,”
J. Acoust. Soc. Am.
,
102
, pp.
772
780
.
23.
Ukeiley
,
L.
, and
Murray
,
N.
, 2005, “
Velocity and Surface Pressure Measurements in an Open Cavity
,”
Exp. Fluids
,
38
, pp.
656
671
.
You do not currently have access to this content.