This work is devoted to the numerical investigation of the gas flow inside a bassoon while it is played. The digitized geometry for the simulations is taken from measurements using laser scan techniques in combination with image processing. Pressure time series measured at the bell and reed were used to define adequate boundaries. Additional pressure measurements inside the musical instrument helped to validate the calculations. With this approach, it was possible to model the characteristics of a bassoon which plays the lowest note. The results of the three-dimensional simulations showed that the acoustic velocities and the underlying mean flow exhibit the same order of magnitude. The calculations indicate that the flow in curved sections such as the crook and the 180 deg bend is considerably different from a steady-state flow. For example, in bends the time-averaged flow features chains of small, alternating vortex pairs, and the pressure distribution differs significantly from a plane wave solution.

References

References
1.
Vergez
,
C.
,
Almeida
,
A.
,
Caussé
,
R.
, and
Rodet
,
X.
, 2003, “
Toward a Simple Physical Model of Double-Reed Musical Instruments: Influence of Aero-Dynamical Losses in the Embouchure on the Coupling Between the Reed and the Bore of the Resonator
,”
Acta Acust. united Acust.
,
89
(6)
, pp.
964
973
. Available at: http://www.ingentaconnect.com/content/dav/aaua/2003/00000089/00000006/art00007http://www.ingentaconnect.com/content/dav/aaua/2003/00000089/00000006/art00007
2.
Almeida
,
A.
,
Vergez
,
C.
, and
Caussé
,
R.
, 2007, “
Quasistatic Nonlinear Characteristics of Double-Reed Instruments
,”
J. Acoust. Soc. Am.
,
121
(
1
), pp.
536
546
.
3.
Almeida
,
A.
,
Vergez
,
C.
,
Rodet
,
X.
, and
Caussé
,
R.
, 2007, “
Experimental Investigation of Reed Instrument Functioning Through Image Analysis of Reed Opening
,”
Acta Acust. united Acust.
,
93
(4)
, pp.
645
658
. Available at: http://www.ingentaconnect.com/content/dav/aaua/2007/00000093/00000004/art00012http://www.ingentaconnect.com/content/dav/aaua/2007/00000093/00000004/art00012
4.
Dalmont
,
J.-P.
,
Gilbert
,
J.
, and
Ollivier
,
S.
, 2003, “
Nonlinear Characteristics of Single-Reed Instruments: Quasistatic Volume Flow and Reed Opening Measurements
,”
J. Acoust. Soc. Am.
,
114
(
4
), pp.
2253
2262
.
5.
Avanzini
,
F.
, and
Rocchesso
,
D.
, 2002, “
Efficiency, Accuracy, and Stability Issues in Discrete-Time Simulations of Single Reed Wind Instruments
,”
J. Acoust. Soc. Am.
,
111
(
5
), pp.
2293
2301
.
6.
van Walstijn
,
M.
, and
Campbell
,
D. M.
, 2003, “
Discrete-Time Modeling of Woodwind Instrument Bores Using Wave Variables
,”
J. Acoust. Soc. Am.
,
113
(
1
), pp.
575
585
.
7.
Barjau
,
A.
, and
Gibiat
,
V.
, 2002, “
Delay Lines, Finite Differences and Cellular Automata: Three Close but Different Schemes for Simulating Acoustical Propagation in 1d Systems
,”
Acta Acust. united Acust.
,
88
(
5
), pp.
554
566
. Available at: http://www.ingentaconnect.com/content/dav/aaua/2002/00000088/00000004/art00011
8.
Barjau
,
A.
, and
Gibiat
,
V.
, 2003, “
Delayed Models for Simplified Musical Instruments
,”
J. Acoust. Soc. Am.
,
114
(
1
), pp.
496
504
.
9.
Barjau
,
A.
, 2007, “
On the One-Dimensional Acoustic Propagation in Conical Ducts with Stationary Mean Flow
,”
J. Acoust. Soc. Am.
,
122
(
6
), pp.
3242
3251
.
10.
Nederveen
,
C.
, and
Dalmont
,
J.
, 2008, “
Corrections to the Plane-Wave Approximation in Rapidly Flaring Horns
,”
Acta. Acust. Acust.
,
94
, pp.
461
473
.
11.
Richter
,
A.
,
Stiller
,
J.
, and
Grundmann
,
R.
, 2007, “
Stabilized Discontinuous Galerkin Methods for Flow-Sound Interaction
,”
J. Comput. Acoust.
,
15
(
1
), pp.
123
143
.
12.
Richter
,
A.
, and
Stiller
,
J.
, 2009, “
A Two-Dimensional DG-SEM Approach to Investigate Resonance Frequencies and Sound Radiation of Musical Woodwind Instruments
,”
Lecture Notes in Computational Science and Engineering,
Springer
,
New York
, pp.
487
494
, Vol.
76
.
13.
Skordos
,
P. A.
, 1995, “
Modeling Flue Pipes: Subsonic Flow, Lattice Boltzmann, and Parallel Distributed Computers
,” Ph.D. thesis, Massachusettes Institute of Technology.
14.
Dequand
,
S.
, 2000, “
Duct Aeroacoustics: From Technological Applications to the Flute
,” Ph.D. thesis, Technische Universiteit Eindhoven.
15.
Dequand
,
S.
,
Hulshoff
,
S. J.
,
Auregan
,
Y.
,
Huijnen
,
J.
, ter
Riet
,
R.
,
van Lier
,
L. J.
, and
Hirschberg
,
A.
, 2003, “
Acoustics of 90 Degree Sharp Bends. Part I: Low-Frequency Acoustical Response
,”
Acta Acust. united Acust.
,
89
(6)
, pp.
1025
1037
. Available at: http://www.ingentaconnect.com/content/dav/aaua/2003/00000089/00000006/art00013http://www.ingentaconnect.com/content/dav/aaua/2003/00000089/00000006/art00013
16.
Dequand
,
S.
,
Hulshoff
,
S. J.
,
Auregan
,
Y.
,
Huijnen
,
J.
, ter
Riet
,
R.
,
van Lier
,
L. J.
, and
Hirschberg
,
A.
, 2004, “
Acoustics of 90 Degree Sharp Bends. Part II: Low-Frequency Aeroacoustical Response
,”
Acta Acust. united Acust.
,
90
(1)
, pp.
13
23
. Available at: http://www.ingentaconnect.com/content/dav/aaua/2004/00000090/00000001/art00004http://www.ingentaconnect.com/content/dav/aaua/2004/00000090/00000001/art00004
17.
Noreland
,
D.
, 2002, “
A Numerical Method for Acoustic Waves in Horns
,”
Acta Acust. united Acust.
,
88
(4)
, pp.
576
586
. Available at: http://www.ingentaconnect.com/content/dav/aaua/2002/00000088/00000004/art00013http://www.ingentaconnect.com/content/dav/aaua/2002/00000088/00000004/art00013
18.
Cosgrove
,
J. A.
,
Buick
,
J. M.
,
Tonge
,
S. J.
,
Munro
,
C. G.
,
Greated
,
C. A.
, and
Campbell
,
D. M.
, 2003, “
Application of the Lattice Boltzmann Method to Transition in Oscillatory Channel Flow
,”
J. Phys. A
,
36
, pp.
2609
2620
.
19.
Kühnelt
,
H.
, 2004, “
Simulating the Sound Generation in Flutes and Flue Pipes With the Lattice-Boltzmann-Method
,”
ISMA
2004, Nara.
20.
da Silva
,
A. R.
,
Scavone
,
G. P.
, and
van Walstijn
,
M.
, 2007, “
Numerical Simulations of Fluid-Structure Interactions in Single-Reed Mouthpieces
,”
J. Acoust. Soc. Am.
,
122
(
3
), pp.
1798
1809
.
21.
Fabre
,
B.
,
Gilbert
,
J.
,
Hirschberg
,
A.
, and
Pelorson
,
X.
, 2012, “
Aeroacoustics of Musical Instruments
,”
Ann. Rev. Fluid Mech.
,
44
, pp.
1
25
.
22.
Grothe
,
T.
,
Baumgart
,
J.
, and
Grundmann
,
R.
, 2009, “
Effect of the Structural Dynamics of the Bocal on the Sound Spectrum of a Bassoon
,” NAG/DAGA 2009, Rotterdam.
23.
Poinsot
,
T. J.
, and
Lele
,
S. K.
, 1992, “
Boundary Conditions for Direct Simulation of Compressible Viscous Flows
,”
J. Comp. Phys.
,
101
(
1
), pp.
104
129
.
24.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
, 2003, “
Ten Years of Industrial Experience With the SST Turbulence Model
,”
Turbulence, Heat and Mass Transfer 4: Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer, Antalya, Turkey
,
K.
Hanjalic
,
Y.
Nagano
, and
M.
Tummers
, eds.,
Begell House, Inc.
,
Redding, CT
, Vol.
4
, pp.
625
632
.
25.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
Amer. Inst. Aeronaut.
& Astron.,
32
(
8
), pp.
1598
1605
.
26.
ANSYS, Inc., 2009, ANSYS-FLUENT V12.1 – Commercially Available CFD Software Package Based on the Finite Volume Method. Southpointe, 275 Technology Drive, Canonsburg, PA
15317
, www.ansys.comwww.ansys.com.
27.
Fletcher
,
N. H.
, and
Rossing
,
T. D.
, 1998,
The Physics of Musical Instruments,
2nd ed.
,
Springer
,
New York
.
28.
Ferziger
,
J. H.
, and
Peric
,
M.
, 2002,
Computational Methods for Fluid Dynamics,
3rd ed.
,
Springer
,
Berlin
.
29.
Andrews
,
M.
, 2011, “
Guidelines for Use of Commercial Software and Diagnostics in Articles for the Journal of Fluids Engineering
,”
Trans. ASME J. Fluids Eng.
,
133
(
1
), p.
010201
.
30.
Felix
,
S.
, and
Pagneux
,
V.
, 2001, “
Sound Propagation in Rigid Bends: A Multimodal Approach
,”
J. Acoust. Soc. Am.
,
110
(
3
), pp.
1329
1337
.
31.
Smith
,
J. O.
, 2009,
Physical Audio Signal Processing for Virtual Musical Instruments and Audio Effects
,
Stanford University
,
Stanford
.
32.
Berger
,
S.
,
Talbot
,
L.
, and
Yao
,
L.
, 1983, “
Flow in Curved Pipes
,”
Annu. Rev. Fluid. Mech.
,
15
(
1
), pp.
461
512
.
You do not currently have access to this content.