Computational fluid dynamics (CFD)-based design optimization was applied to achieve the finalized design of the PediaFlow® PF4, a magnetically levitated rotodynamic pediatric ventricular assist device. It features a streamlined blood-flow path with a single annular fluid passage between the rotor and the stationary housing. The resulting impeller is composed of a first-stage mixed-flow section having four blades at the conical nose region followed by a second-stage fully axial-flow section with three blades within the annular gap region. A stator with three inwardly-directed vanes is provided at the conical tail region to recover pressure and straighten the flow. CFD predictions of head and efficiency characteristics agreed remarkably well with the validation experimental data: with overprediction of head by <7 mmHg over the entire operational range and a slight overprediction in best efficiency by ∼1%. The new optimized PF4 extended the maximum flow range of the previous PF3 device by more than 100% to over 2.3 liter per minute (LPM) for the same range of operating speeds, and doubled the maximum hydraulic efficiency to ∼27%. Evaluation of hemolysis was performed by a Lagrangian particle-tracking technique with analysis of regional contributions to the overall blood damage. The simulation revealed that hemolysis increases with an increase in both the flow rate and rotor speed but not necessarily with just an increase in flow rate at a constant rotor speed. At the flow rate of 1.0 LPM and a head of 138 mmHg, PF4 has a hemolysis index of 0.0032 compared to 0.0058 produced by PF3 at the same flow rate with a head of 48 mmHg. Numerical simulation of radial fluid forces performed by the CFD model with an eccentric rotor revealed the presence of negative fluid stiffness that was monotonically related to both flow and speed. Finally, conjugate heat transfer analysis predicted temperature rise adjacent to the motor to be inversely proportional to the length, but not exceeding ∼2 °C over the intended range of operation. In conclusion, CFD-based design optimization greatly expedited and facilitated the completion of the PediaFlow® flow path and contributed to the system-wide optimization to produce a miniature maglev pump with exceptional hemocompatibility.

References

1.
Roger
,
V. L.
,
Go
,
A. S.
,
Lloyd-Jones
,
D. M.
,
Adams
,
R. J.
,
Berry
,
J. D.
,
Brown
,
T. M.
,
Carnethon
,
M. R.
,
Dai
.
S.
,
de Simone
,
G.
,
Ford
.
E. S.
,
Fox
,
C. S.
,
Fullerton
.
H. J.
,
Gillespie
,
C.
,
Greenlund
.
K. J.
,
Hailpern
,
S. M.
,
Heit
,
J. A.
,
Ho
,
P. M.
,
Howard
,
V. J.
,
Kissela
,
B. M.
,
Kittner
,
S. J.
,
Lackland
,
D. T.
,
Lichtman
,
J. H.
,
Lisabeth
,
L. D.
,
Makuc
,
D. M.
,
Marcus
,
G. M.
,
Marelli
.
A.
,
Matchar
,
D. B.
,
McDermott
,
M. M.
,
Meigs
,
J. B.
,
Moy
,
C. S.
,
Mozaffarian
,
D.
,
Mussolino
,
M. E.
,
Nichol
,
G.
,
Paynter
,
N. P.
,
Rosamond
,
W. D.
,
Sorlie
,
P. D.
,
Stafford
,
R. S.
,
Turan
,
T. N.
,
Turner
,
M. B.
,
Wong
,
N. D.
, and
Wylie-Rosett
,
J.
, 2011, “
Heart Disease and Stroke Statistics-2011 Update: A Report from the American Heart Association
,”
Circulation
,
123
(
4
), pp.
e18
e209
.
2.
Moller
,
J.
, 1998, “
Prevalence and Incidence of Cardiac Malformation
,”
Perspectives in Pediatric Cardiology: Surgery of Congenital Heart Disease: Pediatric Cardiac Care Consortium, 1984–1995
,
Futura Publishing
,
Armonk, NY
, Vol.
6
, pp.
19
26
.
3.
Uber
,
B. E.
,
Webber
,
S. A.
,
Morell
,
V. O.
, and
Antaki
,
J. F.
, 2006, “
Hemodynamic Guidelines for Design and Control of a Turbodynamic Pediatric Ventricular Assist Device
,”
ASAIO J.
,
52
(
4
), pp.
471
478
.
4.
Wu
,
J.
,
Antaki
,
J. F.
,
Wagner
,
W.
,
Snyder
,
T.
,
Paden
,
B.
, and
Borovetz
,
H.
, 2005, “
Elimination of Adverse Leakage Flow in a Miniature Pediatric Centrifugal Blood Pump by Computational Fluid Dynamics-Based Design Optimization
,”
ASAIO J.
,
51
, pp.
636
643
.
5.
Wu
,
J.
,
Shimmei
,
K.
,
Tani
,
K.
,
Niiura
,
K.
, and
Sato
,
J.
, 2007, “
CFD-Based Design Optimization for Hydro Turbines
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
159
168
.
6.
Maul
,
T.
,
Antaki
,
J. F.
,
Wu
,
J.
,
Kim
,
J.
,
Kameneva
,
M.
,
Olia
,
S.
,
Wearden
,
P.
,
Kocyildirim
,
E.
, and
Borovetz
,
H.
, 2011, “
In Silico Design and in Vivo Analysis of the PediaFlowTM Pediatric Ventricular Assist Device
,”
Proceedings of the ASME Summer Bioengineering Conference, June 22–25
,
Nemacolin Woodlands
,
Pennsylvania, USA
.
7.
Antaki
,
J. F.
,
Ricci
,
M.
,
Verkaik
,
J.
,
Snyder
,
S.
,
Maul
,
T.
,
Kim
,
J.
,
Paden
,
D.
,
Kameneva
,
M.
,
Paden
,
B.
,
Wearden
,
P.
, and
Borovetz
,
H.
, 2010, “
PediaFlow Maglev Ventricular Assist Device: A Prescriptive Design Approach
,”
Cardiovasc. Eng. Technol.
,
1
(
1
), pp.
104
121
.
8.
Thompson
,
J.
,
Soni
,
B.
, and
Weatherill
,
N.
, 1999,
Handbook of Grid Generation
,
CRC Press
,
Boca Raton, FL
.
9.
Stepanoff
,
A. J.
, 1966,
Centrifugal and Axial Flow Pumps: Theory, Design, and Application
,
John Wiley & Sons
,
New York
.
10.
Ferziger
,
J. H.
, and
Perić
,
M.
, 2002, “
Computational Methods for Fluid Dynamics
,” Springer, New York.
11.
ANSYS, Inc., CFX ANSYS, 2010, “
User’s Guide.
12.
Bludszuweit
,
C.
, 1995, “
Model for a General Mechanical Blood Damage Prediction
,”
Artif. Organs
,
19
, pp.
583
519
.
13.
Song
,
X.
,
Throckmorton
,
A. L.
,
Antaki
,
J. F.
, and
Olsen
,
D. B.
, 2004, “
Quantitative Evaluation of Blood Damage in a Centrifugal VAD by Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
126
(3)
, pp.
410
419
.
14.
Wu
,
J.
,
Paden
,
B.
,
Borovetz
,
H.
, and
Antaki
,
J. F.
, 2009, “
Computational Fluid Dynamics Analysis of Blade Tip Clearances on Hemodynamic Performance and Blood Damage in a Centrifugal Ventricular Assist Device
,”
Artif. Organs
,
34
(
5
), pp.
402
411
.
15.
Gardiner
,
J.
,
Wu
,
J.
,
Noh
,
M.
,
Antaki
,
J. F.
,
Snyder
,
T.
,
Paden
,
D.
, and
Paden
,
B.
, 2007, “
Thermal Analysis of the Pediatric Ventricular Assist Device
,”
ASAIO J.
,
53
, pp.
65
73
.
16.
Throckmorton
,
A.
,
Untaroiu
,
A.
,
Allaire
,
P.
,
Wood
,
H.
,
Matherne
,
G. P.
,
Lim
,
D.
,
Peeler
,
B.
, and
Olsen
,
D.
, 2004, “
Computational Analysis of an Axial Flow Pediatric Ventricular Assist Device
,”
Artif. Organs
,
28
(
1
), pp.
881
891
.
17.
Wu
,
Z.
,
Antaki
,
J. F.
,
Burgreen
,
G. W.
,
Butler
,
K. C.
,
Thomas
,
D. C.
, and
Griffith
,
B. P.
, 1999, “
Fluid Dynamic Characterization of Operating Conditions for Continuous Flow Blood Pumps
,”
ASAIO J.
,
45
(
5
), pp.
442
449
.
You do not currently have access to this content.