Abstract

The main objective of the present study is the investigation of volume fraction effects on the collision statistics of nonsettling inertial particles in a granular medium as well as suspended in an unsteady homogeneous isotropic turbulent flow. For this purpose, different studies with mono-disperse Lagrangian point-particles having different Stokes numbers are considered in which the volume fraction of the dispersed phase is varied between 0.001 and 0.01. The fluid behavior is computed using a three-dimensional Lattice-Boltzmann method. The carrier-fluid turbulence is maintained at Taylor microscale Reynolds number 65.26 by applying a spectral forcing scheme. The Lagrangian particle tracking is based on considering the drag force only and a deterministic model is applied for collision detection. The influence of the particle phase on the fluid flow is neglected at this stage. The particle size is maintained at a constant value for all Stokes numbers so that the ratio of particle diameter to Kolmogorov length scale is fixed at 0.58. The variation of the particle Stokes number was realized by modifying the solids density. The observed particle Reynolds and Stokes numbers are in between [1.07, 2.61] and [0.34, 9.79], respectively. In the present simulations, the fluid flow and the particle motion including particle-particle collisions are based on different temporal discretization. Hence, an adaptive time stepping scheme is introduced. The particle motion as well as the occurrence of inter-particle collisions is characterized among others by Lagrangian correlation functions, the velocity angles between colliding particles and the collision frequencies. Initially, a fluid-free particle system is simulated and compared with the principles of the kinetic theory to validate the implemented deterministic collision model. Moreover, a selection of results obtained for homogeneous isotropic turbulence is compared with in literature available DNS and LES results as well. According to the performed simulations, the collision rate of particles with large Stokes numbers strongly depends on the adopted volume fraction, whereas for particles with small Stokes numbers the influence of particle volume fraction is less pronounced.

References

1.
Ho
,
C. A.
, and
Sommerfeld
,
M.
, 2002, “
Modelling of Micro-Particle Agglomeration in Turbulent Flow
,”
Chem. Sci. Eng.
,
57
, pp.
3073
3084
.
2.
Saffman
,
P. G.
, and
Turner
,
J. S.
, 1956, “
On the Collision of Drops in Turbulent Clouds
,”
J. Fluid Mech.
,
1
, pp.
16
30
.
3.
Abrahamson
,
J.
, 1975, “
Collision Rates of Small Particles in a Vigorously Turbulent Fluid
,”
Chem. Eng. Sci.
,
30
, pp.
1371
1379
.
4.
Williams
,
J. J. E.
, and
Crane
,
R. I.
, 1983, “
Particle Collision Rate in Turbulent Flow
,”
J. Multiphase Flow
,
9
, pp.
421
435
.
5.
Kruis
,
F. E.
, and
Kusters
,
K. A.
, 1997, “
The Collision Rate of Particles in Turbulent Flow
,”
Chem. Eng. Comm.
,
158
, pp.
201
230
.
6.
Mei
,
R.
, and
Hu
,
K. C.
, 1999, “
On the Collision Rate of Small Particles in Turbulent Flows
,”
J. Fluid Mech.
,
391
, pp.
67
89
.
7.
Alipchenkov
,
V. M.
, and
Zaichik
,
L. I.
, 2001, “
Particle Collision Rate in Turbulent Flow
,”
J. Fluid Dynamics
,
36
, pp.
608
618
.
8.
Wang
,
L. P.
,
Ayala
,
O.
,
Kasprzak
,
S. E.
, and
Grabowski
,
W. W.
, 2005, “
Theoretical Formulation of Collision Rate and Collision Efficiency of Hydrodynamically Interacting Cloud Droplets in Turbulent Atmosphere
,”
J. Atmos. Sci.
62
, pp.
2433
2450
.
9.
Zaichik
,
L. I.
,
Alipchenkov
,
V. M.
, and
Avetissian
,
A. R.
, 2006, “
Modelling Turbulent Collision Rates of Inertial Particles
,”
Int. J. Heat Fluid Flow
,
27
, pp.
937
944
.
10.
You
,
C.
,
Zhao
,
H.
,
Haiying
,
Y. C.
,
Qi
,
H.
, and
Xu
,
X.
, 2004, “
Experimental Investigation of Interparticle Collision Rate in Particulate Flow
,”
Int. J. Multiphase Flow
,
30
, pp.
1121
1138
.
11.
Salazar
,
J. P. L. C.
,
De Jong
,
J.
,
Cao
,
L. J.
,
Woodward
,
S. H.
,
Meng
,
H.
, and
Collins
,
L. R.
, 2008, “
Experimental and Numerical Investigation of Inertial Particle Clustering in Isotropic Turbulence
,”
J. Fluid. Mech.
,
600
, pp.
245
256
.
12.
Sundaram
,
S.
, and
Collins
,
L. R.
, 1997, “
Collision Statistics in an Isotropic Particle-Laden Turbulent Suspension. Part 1. Direct Numerical Simulations
,”
J. Fluid Mech.
,
335
, pp.
75
109
.
13.
Wang
,
L.-P.
,
Wexler
,
A. S.
, and
Zhou
,
Y.
, 1998, “
On the Collision Rate of Small Particles in Isotropic Turbulence. I. Zero-Inertia Case
,”
Phys. Fluids
10
, pp.
266
276
.
14.
Février
,
P.
,
Simonin
,
O.
, and,
Legendre
,
D.
, 2001, “
Particle Dispersion and Preferential Concentration Dependence on Turbulent Reynolds Number from Direct and Large-Eddy Simulations of Isotropic Homogeneous Turbulence
,”
Proceedings of 4th International Conference on Multiphase Flow
, New Orleans, Louisiana, pp.
1
12
.
15.
Fede
,
P.
, and
Simonin
,
O.
, 2006, “
Numerical Study of the Subgrid Fluid Turbulence Effects on the Statistics of Heavy Colliding Particles
,”
Phys. Fluids
,
18
, p.
045103
.
16.
Ten Cate
,
A.
,
Derksen
,
J. J.
,
Portela
,
L. M.
, and
van den Akker
,
H. E. A.
, 2004, “
Fully Resolved Dimulations of Colliding Monodisperse Spheres in Forced Isotropic Turbulence
,”
J. Fluid Mech.
,
519
, pp.
233
271
.
17.
Uhlmann
,
M.
, 2005, “
Interface-Resolved Direct Numerical Simulations of Vertical Particulate Channel Flow in the Turbulent Regime
,”
Phys. Fluids
,
20
, p.
053305
.
18.
Lucci
,
F.
,
Ferrante
,
S.
, and
Elghobashi
,
S.
, 2010, “
Modulation of Isotropic Turbulence by Particles of Taylor Length-Scale Size
,”
J. Fluid Mech.
,
650
, pp.
5
55
.
19.
Dietzel
,
M.
,
Ernst
,
M.
, and
Sommerfeld
,
M.
, 2011, “
Application of the Lattice-Boltzmann-Method in Two-Phase Flow Studies: From Point-Particles to Fully Resolved Particles
,” Proceedings of ASME-JSME-KSME Joint Fluid Engineering Conference 2011, Paper No. AJK2011-04033.
20.
Wang
,
L.-P.
,
Rosa
,
B.
,
Gao
,
H.
,
He
,
G.
, and
Jin
,
G.
, 2009, “
Turbulent Collision of Inertial Particles: Point-Particle Based, Hybrid Simulations and Beyond
,”
Int. J. Multiphase
,
35
, pp.
854
867
.
21.
Laviéville
,
J.
,
Deutsch
,
E.
, and
Simonin
,
O.
, 1995, “
Large Eddy Simulation of Interactions Between Colliding Particles and a Homogeneous Isotropic Turbulence Field
,”
Gas-Solid-Flows
,
228
, pp.
347
357
.
22.
Sommerfeld
,
M.
, 2001, “
Validation of a Stochastic Lagrangian Modelling Approach for Inter-Particle Collisions in Homogeneous Isotropic Turbulence
,”
Int. J. Multiphase Flow
,
27
, pp.
1829
1858
.
23.
Ladd
,
A. J. C.
, 1994, “
Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation
,”
J. Fluid. Mech.
,
271
, pp.
285
309
.
24.
He
,
X.
, and
Luo
,
L.-S.
, 1997, “
Theory of the Lattice Boltzmann Method: From the Boltzmann Equation to the Lattice Boltzmann Equation
,”
Phys. Rev. E
,
56
(
6
), pp.
6811
6817
.
25.
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Fluid Mech.
,
30
, pp.
329
364
.
26.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
, 1954, “
A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
, pp.
511
525
.
27.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
, 2002, “
Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method
,”
Phys. Rev. E.
,
65
, p.
046308
.
28.
Dietzel
,
M.
, and
Sommerfeld
,
M.
, 2010, “
LBM Simulations on Agglomerate Transport and Deposition
,”
AIP Conf. Proc.
,
1207
, pp.
796
801
.
29.
Eswaran
,
V.
, and
Pope
,
S. B.
, 1988, “
An Examination of Forcing in Direct Numerical Simulations of Turbulence
,”
Comput. Fluids
16
, pp.
257
278
.
30.
Renshaw
,
E.
, 1987, “
The Discrete Uhlenbek-Ornstein Process
,”
J. Appl. Probability
,
24
, pp.
908
917
.
31.
Overholt
,
M. R.
, and
Pope
,
S. B.
, 1998, “
A Deterministic Forcing Scheme for Direct Numerical Simulations of Turbulence
,”
Comput. Fluids
,
27
, pp.
11
28
.
32.
Sommerfeld
,
M.
,
van Wachem
,
B.
, and
Oliemans
,
R.
, 2008, “
Computational Fluid Dynamics of Dispersed Multi-Phase Flows
,”
ERCOFTAC Best Practice Guidelines, European Research Community on Flow, Turbulence and Combustion
,
Lausanne
,
Switzerland
.
33.
Hjelmfelt
,
A. T.
, and
Mockros
,
L. F.
, 1966, “
Motion of Discrete Particles in a Turbulent Fluid
,”
Appl. Sci. Res.
,
16
, pp.
149
161
.
34.
Schiller
,
L.
, and
Naumann
,
A.
, 1933, “
Über die Grundlegenden Berechnungen bei der Schwerkraftaufbereitung
,”
Verl. Deu. Ing.
,
77
, pp.
318
320
.
35.
Sommerfeld
,
M.
, 1996, “
Modellierung und numerische Berechnung von partikelbeladenen turbulenten Strömungen mit Hilfe des Euler/ Lagrange-Verfahrens
,”
Habilitation
,
Shaker Verlag
,
Aachen, Germany
.
36.
Sundaram
,
S.
, and
Collins
,
L. R.
, 1996, “
Numerical Considerations in Simulating a Turbulent Suspension of Finite-Volume Particles
,”
J. Comp. Phys.
,
124
, pp.
337
350
.
37.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1987,
Computer Simulation of Liquids
, 1st ed.,
Oxford University
,
New York
.
38.
Tanaka
,
T.
, and
Tsuji
,
Y.
, 1991, “
Numerical Simulation of Gas-Solid Two-Phase Flow in a Vertical Pipe: On the Effect of Inter-Particle Collisions
,”
Gas-Solid-Flow
121
, pp.
123
128
.
39.
Decker
,
S.
, 2005, “
Zur Berechnung von Gerührten Suspensionen mit dem Euler-Lagrange-Verfahren
,” Ph.D. thesis, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany.
40.
Kolmogorov
,
A. N.
, 1991, “
The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers
,”
Proc. R. Soc. Lond., Ser. A
434
, pp.
9
13
.
41.
Yeung
,
P. K.
, and
Pope
,
S. B.
, 1989, “
Lagrangian Statistics From Direct Numerical Simulations of Isotropic Turbulence
,”
J. Fluid. Mech.
,
207
, pp.
531
586
.
42.
Maxey
,
M. R.
, and
Riley
,
J. J.
, 1983, “
Equation of Motion for a Small Rigid Sphere in a Nonuniform Flow
,”
Phys. Fluids
,
26
(
4
), pp.
883
889
.
43.
Elghobashi
,
S.
, 1994, “
On Predicting Particle-Laden Turbulent Flows
,”
Appl. Sci. Res.
,
52
, pp.
309
329
.
44.
Crowe
,
C. T.
, 1981, “
On the Relative Importance of Particle-Particle Collisions in Gas-Particle Flows
,”
Proceedings of the Conference on Gas Borne Particles
, Paper No. C78/81, pp. 135–137.
45.
Coleman
,
S. W.
, and
Vassilicos
,
J. C.
, 2009, “
A Unified Sweep-Stick Mechanism to Explain Particle Clustering in Two- and Three-Dimensional Homogeneous Isotropic Turbulence
,”
Phys. Fluids
21
, p.
113301
.
You do not currently have access to this content.