An understanding of the fundamental mechanisms involved in the interaction between bubbles and structures is of importance for many applications involving cavitation erosion. Generally, the final stage of bubble collapse is associated with the formation of a high-speed reentrant liquid jet directed toward the solid surface. Local forces associated with the collapse of such bubbles can be very high and can exert significant loads on the materials. This formation and impact of liquid jet is an area of intense research. Under some conditions, the presence of gravity and other nearby boundaries and free surfaces alters the jet direction and need to be understood, especially that in the laboratory, small scale tests in finite containers have these effects inherently present. In this work, experiments and numerical simulations of the interaction between a vertical wall and a bubble are carried out using Dynaflow’s three-dimensional code, 3DYNAFS-BEM, which models the unsteady dynamics of a liquid flow including the presence of highly nonlinear time evolving gas-liquid interfaces. The numerical predictions were validated using scaled experiments carried out using spark generated bubbles. These spark bubble tests produced high fidelity test data that properly scale the fluid dynamics as long as the geometric nondimensional parameters, gravity and time are properly scaled. The use of a high speed camera allowing framing rates as high as 50,000 frames per second to photograph the bubbles produced high quality observations of bubble dynamics including clear visualizations of the reentrant jet formation inside the bubble. Such observations were very useful in developing and validating the numerical models. The cases studied showed very good correlation between the numerical simulations and the experimental observations and allowed development of predictive rules for the re-entrant jet characteristics, including jet angle, jet speed, and various geometric characteristics of the jet.

References

References
1.
Jayaprakash
,
A.
,
Chahine
,
G. L.
, and
Hsiao
,
C.-T.
, 2010, “
Numerical and Experimental Study of the Interaction of a Spark Generated Bubble and a Vertical Wall
,”
IMECE2010-40515, ASME 2010 International Mechanical Engineering Congress and Exposition
, Vancouver, British Columbia, Canada, November 10–12.
2.
Chahine
,
G. L.
,
Prabhukumar
,
S.
, and
Duraiswami
,
R.
, 1996, “
Bubble Dynamics near A Cylindrical Body: 3-D Boundary Element Simulation of the ONR Snay/Goertner Bubble Benchmark Problem
,”
67th Shock and Vibration Symposium
, Monterey, CA, November 1996.
3.
Chahine
,
G. L.
, and
Duraiswami
,
R.
, 1992, “
Dynamical Interactions in a Bubble Cloud
,”
ASME J. Fluids Eng.
,
114
, p.
680
.
4.
Rayleigh
,
L.
, 1917, “
On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity
,”
Phil. Mag.
,
34
, pp.
94
98
.
5.
M.
Plesset
, 1949, “
The Dynamics of Cavitation Bubbles
,”
ASME J. Appl. Mech.
,
16
, pp.
228
231
.
6.
Ellis
,
A. T.
, 1965, “
Parameters Affecting Cavitation and Some New Methods for Their Study
,” California Institute of Technology, Report E-115.1.
7.
Kling
,
C. L.
, 1970, “
A High Speed Photographic Study of Cavitation Bubble Collapse
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
8.
Lauterborn
,
W.
, and
Bolle
,
H.
, 1975, “
Experimental Investigations of Cavitation-Bubble Collapse in the Neighborhood of a Solid Boundary
,”
J. Fluid Mech.
,
72
, pp.
391
399
.
9.
Chahine
,
G. L.
, 1979, “
Etude Locale du Phénomène de Cavitation Analyse des Facteurs Régissant la Dynamique des Interfaces
,” Ph.D. thesis, Université Paris VI.
10.
Chahine
,
G. L.
, and
Bovis
,
A.
, 1980, “
Oscillation and Collapse of a Cavitation Bubble in the Vicinity of a Two Liquid Interface
,”
Cavitation and Inhomogeneities in Underwater Acoustics
,
Springer-Verlag
,
New York
, pp.
23
29
.
11.
Bovis
,
A. G.
, and
Chahine.
G. L.
, 1980, “
Asymptotic Study of the Non-Spherical Collapse of a Bubble Near a Solid Wall
,” ASME Cavitation and Polyphase Flow Forum, New Orleans, LA, pp.
14
18
.
12.
Bovis
,
A. G.
, and
Chahine
,
G. L.
, 1981, “
Etude Asymptotique de l’Interaction d’une Bulle Oscillante avec une Surface Libre Voisine
,”
J. Mécanique
,
20
(
3
) pp.
537
556
.
13.
Blake
,
J. R.
, and
Gibson
,
D. C.
, 1987, “
Cavitation Bubbles Near Boundaries
,”
Annu. Rev. Fluid Mech.
,
19
, pp.
99
123
.
14.
Shima
A.
, and
Tomita
,
Y.
, 1989, “
Some Numerical Aspects of Cavitation Bubble Collapse
,”
Annual Review of Numerical Fluid Mechanics and Heat Transfer
Hemisphere
,
L. A.
Dziobek
and
B.
Brienza
, eds., Washington, D.C, Vol.
2
, Chap. 5, pp.
198
226
.
15.
Blake
,
J. R.
,
Taib
,
B. B.
, and
Doherty
G.
, 1986, “
Transient Cavities Near Boundaries. Part 1. Rigid Boundary
,”
J. Fluid Mech.
,
170
, pp.
479
497
.
16.
Lindau
,
R.
, and
Lauterborn.
W.
, 2003, “
Cinematographic Observation of the Collapse and Rebound of a Laser-Produced Cavitation Bubble Near a Wall
,”
J. Fluid Mech.
,
479
, pp.
327
348
.
17.
Ohl, C.-D.,
Philipp
,
A.
, and
Lauterborn
,
W.
, 1995, “
Cavitation Bubble Collapse Studied at 20 Million Frames per Second
,”
Ann. Phys.
,
507
(
1
), pp.
26
34
.
18.
Isselin
,
J.-C.
,
Alloncle
,
A -P.
, and
Autric
,
M.
, 1998, “
On Laser Induced Single Bubble Near a Solid Boundary: Contribution to the Understanding of Erosion Phenomena
,”
J. Appl. Phys.
84
, p.
5766
5772
.
19.
Popinet
,
S.
, and
Zaleski
,
S.
, 2002, “
Bubble Collapse Near a Solid Boundary: A Numerical Study of the Influence of Viscosity
,”
J. Fluid Mech.
,
464
, pp
137
163
.
20.
Klaseboer
,
E.
,
Hung
,
K. C.
,
Wang
,
C.
,
Wang
,
C. W.
,
Khoo
,
B. C.
,
Boyce
,
P.
,
Debono
,
S.
, and
Charlier
H.
, 2005, “
Experimental and Numerical Investigation of the Dynamics of an Underwater Explosion Bubble Near a Resilient/Rigid Structure
,”
J. Fluid Mech.
,
537
, pp.
387
413
.
21.
Van Der Geld
,
C. W. M.
, and
Kuerten
,
J. G. M.
, 2009, “
Axisymmetric Dynamics of a Bubble Near a Plane Wall
,”
J. Fluid Mech.
,
640
, pp.
265
303
.
22.
Zhang
,
A. M.
,
Yao
,
X. L.
, and
Feng
,
L. H.
, 2009, “
The Dynamic Behavior of a Gas Bubble Near a Wall
,”
Ocean Eng.
,
36
(
3–4
), pp.
295
305
.
23.
Johnsen
,
E.
, and
Colonius
,
T.
, 2009, “
Numerical Simulations of Non-Spherical Bubble Collapse
,”
J. Fluid Mech.
,
629
, pp.
231
262
.
24.
Brujan
,
E. A.
, and
Vogel
,
A.
, 2006, “
Stress Wave Emission and Cavitation Bubble Dynamics by Nanosecond Optical Breakdown in a Tissue Phantom
,”
J. Fluid Mech.
558
, pp.
281
308
.
25.
Chahine
,
G. L.
, and
Harris.
G. H.
, 1997, “
Development and Validation of a Multicycle Bubble Model for Explosion Applications
,”
68th Shock Vibration Symposium
, Hunt Valley, MD.
26.
Cook
,
J. A.
,
Gleeson
,
A. M.
,
Roberts
,
R. M.
, and
Rogers.
R. L.
, 1997, “
A Spark-Generated Bubble Model With Semi-Empirical Mass Transport
,”
J. Acoust. Soc. Am.
101
(
4
), pp.
1908
1920
.
27.
Chahine
,
G. L.
,
Duraiswami
,
R.
, and
Lambrecht
,
C. J.
, 1994, “
A Method for Validation of Underwater Explosion Bubble Codes: The Use of Benchmark Observations for Spark Generated Bubbles
,” Dynaflow Inc. Technical Report 6.002-18.
28.
Chahine
,
G. L.
,
Frederick
,
G. S.
,
Lambrecht
,
C.
,
Mair
,
H.
, and
Harris
,
G. S.
, 1995, “
Spark-Generated Bubbles as Laboratory-Scale Models of Underwater Explosions and Their Use for Validation of Simulation Tools
,”
SAVIAC Proceedings of the 66th Shock and Vibrations Symposium
, Vol.
I
, Biloxi, MS.
29.
Chahine
,
G. L.
, and
Hsiao
,
C.-T.
, 2010, “
3DYNAFS-A Three-Dimensional Free Surface and Bubble Dynamics Code
,”
User Manual Version 7-086
.
30.
Chahine.
G. L.
,
Annasami.
R.
,
Hsiao
,
C.-T.
, and
Harris
,
G.
, 2002, “
Scaling Rules for the Prediction of UNDEX Bubble Re-Entering Jet Parameters
,”
J. Crit. Technol. Shock Vib.
,
19
,
xxx
xxx
.
31.
Choi
,
J.
,
Hsiao
,
C -T.
,
Chahine
,
G. L.
, and
Ceccio
,
S.
, 2009, “
Growth, Oscillation and Collapse of Vortex Cavitation Bubbles
,”
J. Fluid Mech.
,
624
, pp.
255
279
.
32.
Chahine
,
G. L.
, and
Duraiswami
R.
, 1993, “
Method for Calculating 2-D and 3-D Underwater Explosion Bubble Behavior in Free Water and Near Structures
,” NSWC Dahlgren Division Report NSWCDD/TR-93/44 (limited distribution).
33.
Chahine
,
G. L.
,
Duraiswami
,
R.
, and
Kalumuck
,
K. M.
, 1997, “
Boundary Element Method for Calculating 2-D and 3-D Underwater Explosion Bubble Loading on Nearby Structures Including Fluid-Structure Interaction Effects
,” NSWC Dahlgren Division Report NSWCDD/TR-93/46 (limited distribution).
34.
Chahine
,
G. L.
,
Prabhukumar
,
S.
, and
Duraiswami
,
R.
, 1996, “
Bubble Dynamics Near a Cylindrical Body: 3-D Boundary Element Simulation of the ONR/SNAY Goertner Bubble Benchmark Problems
,”
67th Shock and Vibration Symposium
, Vol.
2
, San Diego, CA.
35.
Chahine
,
G. L.
,
Hsiao
,
C.-T.
, and
Kalumuck
,
K. M.
, 2003, “
Simulation of Surface Piercing Body Coupled Response to Underwater Bubble Dynamics Utilizing 3DYNAFS, a Three Dimensional BEM Code
,”
Comput. Mech.
,
32
(
4–6
), pp.
319
326
.
36.
Chahine
,
G. L.
, and
Kalumuck
,
K. M.
, 1998, “
BEM Software for Free Surface Flow Simulation Including Fluid-Structure Interaction Effects
,”
Int. J. Comput. Appl. Technol.
,
11
(
3/4/5
),
177
198
.
37.
Kalumuck
,
K. M.
,
Duraiswami
,
R.
, and
Chahine
,
G. L.
, 1995, “
Bubble Dynamics Fluid-Structure Interaction Simulation on Coupling Fluid BEM and Structural FEM Codes
,”
J. Fluids Struct.
,
9
, pp.
861
883
.
38.
Kalumuck
,
K. M.
,
Duraiswami
,
R.
, and
Chahine
,
G. L.
, 1995, “
Analysis of the Response of a Deformable Structure to Underwater Explosion Bubble Loading Using a Fully Coupled Fluid-Structure Interaction Procedure
,”
SAVIAC Proceedings of the 66th Shock and Vibration Symposium
, Vol.
I
, Biloxi, MS.
39.
Krieger
,
J. R.
, and
Chahine
,
G. L.
, 2005, “
Acoustic Signals of Underwater Explosions Near Surfaces
,”
J. Acoust. Soc. Am.
,
118
, pp.
2961
2974
.
You do not currently have access to this content.