This article describes a literature review focused on published empirical measurements of external flows over bodies of revolution that can be employed for verification and validation of calculations of survey-class autonomous underwater vehicles (AUVs) or other like bodies. The flow regime for a survey-class AUV is defined, and a mathematically optimal velocity results for these energy-limited vehicles. A range-maximal hotel load is one of the inferences. Cavitation is shown not to affect this type of AUV. Environmental and computational problems of turbulence are discussed. A table of vital statistics of contemporary survey-class AUVs is provided.

References

References
1.
Stevenson
,
P.
,
Furlong
,
M.
, and
Dormer
,
D.
, 2007, “
AUV Shapes-Combining the Practical and Hydrodynamic Considerations
,” Paper presented at Oceans 2007 Aberdeen, IEEE Ocean Engineering Society.
2.
The Resistance Committee of the ITTC,
F.
Stern
, Chair
, 1999, “
Final report and recommendations to the 22nd ITTC
,”
Proceedings of the 22nd International Towing Tank Conference
,
S. I.
Yang
, Ed., Vol.
1
, pp.
173
246
.
3.
AIAA Computational Fluid Dynamics Committee on Standards, 1998, “
Guide for the Verification and Validation of Computational Fluid Dynamics Simulations
,” Paper G-077-1998, American Institute of Aeronautics and Astronautics.
4.
Roache
,
P. J.
, 1997, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Ann. Rev. Fluid Mech.
,
29
, pp.
123
160
.
5.
Roache
,
P. J.
, 1998, “
Verification of Codes and Calculations
,”
AIAA J.
,
36
(
5
), pp.
696
702
.
6.
Oberkampf
,
W. L.
, and
Blottner
,
F. G.
, 1998, “
Issues in Computational Fluid Dynamics Code Verification and Validation
,”
AIAA J.
,
36
(
5
), pp.
687
695
.
7.
Rizzi
,
A.
, and
Vos
,
J.
, 1998, “
Toward Establishing Credibility in Computational Fluid Dynamics Simulations
,”
AIAA J.
,
36
(
5
), pp.
668
675
.
8.
Mehta
,
U. B.
, 1998, “
Credible Computational Fluid Dynamics Simulations
,”
AIAA J.
,
36
(
5
), pp.
665
667
.
9.
Coleman
,
H.
, and
Stern
,
F.
, 1997, “
Uncertainties in CFD Validation
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
795
803
, also see [17].
10.
Stern
,
F.
,
Wilson
,
R.
, and
Coleman
,
H.
, 2001, “
Comprehensive Approach to Verification and Validation of CFD Simulation—Part 1: Methodology and Procedure
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
793
802
.
11.
Stern
,
F.
,
Wilson
,
R.
, and
Coleman
,
H.
, 2001, “
Comprehensive Approach to Verification and Validation of CFD Simulation—Part 2: Application for RANS Simulation of Cargo/Container Ship
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
803
810
.
12.
Roache
,
P. J.
,
Ghia
,
K. N.
, and
White
,
F. M.
, 1986, “
Editorial Policy Statement on the Control of Numerical Accuracy
,”
ASME J. Fluids Eng.
,
108
, p.
2
.
13.
Editorial Board
, 1994, “
Journal of Heat Transfer Editorial Policy Statement on Numerical Accuracy
,”
ASME J. Heat Transfer
,
116
(
4
), pp.
797
798
.
14.
Editorial Board
, 1994, “
Editorial Policy Statement on Numerical Accuracy and Experimental Uncertainty
,”
AIAA J.
,
32
(
1
), p.
3
.
15.
Zingg
,
D. W.
, 1993, “
Grid Studies for Thin-Layer Navier-Stokes Computations of Airfoil Flowfields
,”
AIAA J.
,
30
(
10
), pp.
2561
2564
.
16.
Gorski
,
J. J.
, 2002, “
Present State of Numerical Ship Hydrodynamics and Validation Experiments
,”
ASME J. Offshore Mech. Arctic Eng.
,
124
, pp.
74
80
.
17.
Roache
,
P. J.
,
Coleman
,
H.
, and
Stern
,
F.
, 1998, “
Discussion and Author’s Closure of ‘Uncertainties in CFD Validation’
,”
ASME J. Fluids Eng.
,
120
, pp.
635
636
.
18.
European Research Community on Flow, Turbulence and Combustion, 2010, “
Ercoftac ‘Classic Collection’ Database
,” online database accessed December 2010.
19.
Katz
,
J.
, Ed., 2010, “
The ASME Journal of Fluids Engineering Data Bank
,” online database accessed December 2010.
20.
Pickard
,
G. L.
, 1979,
Descriptive Physical Oceanography, An Introduction
,
3rd ed.
,
Pergamon
,
Oxford
.
21.
Ross
,
D. A.
, 1970,
Introduction to Oceanography
,
Appleton-Century Crofts
,
New York
.
22.
Menard
,
H. W.
, and
Smith
,
S. M.
, 1966, “
Hypsometry of Ocean Basin Provinces
,”
J. Geophys. Res.
,
71
(
18
), pp.
4305
4325
.
23.
Huggins
,
A.
, and
Packwood
,
A. R.
, 1994, “
The Optimum Dimensions for a Long-Range, Autonomous, Deep-Diving, Underwater Vehicle for Oceanographic Research
,”
Ocean Eng.
,
21
(
1
), pp.
45
56
.
24.
Chyba
,
M.
,
Haberkorn
,
T.
,
Singh
,
S. B.
,
Smith
,
R. N.
, and
Choi
,
S. K.
, 2009, “
Increasing Underwater Vehicle Autonomy by Reducing Energy Consumption
,”
Ocean Eng.
,
36
(
1
), pp.
62
73
.
25.
Willcox
,
J. S.
,
Bellingham
,
J. G.
,
Zhang
,
Y.
, and
Baggeroer
,
A. B.
, 2001, “
Performance Metrics for Oceanographic Surveys With Autonomous Underwater Vehicles
,”
IEEE J. Oceanic Eng.
,
26
(
4
), pp.
711
725
.
26.
Todd
,
F. H.
, 1967, “
Resistance of Ships
,”
Principles of Naval Architecture (revised)
,
The Society of Naval Architects and Marine Engineers
,
New York
, pp.
288
462
.
27.
Hildenbrand
,
W.
, and
Kirman
,
A. P.
1976,
Introduction to Equilibrium Analysis
,
North-Holland
,
Oxford
.
28.
George
,
K. D.
, and
Shorey
,
J.
, 1978,
The Allocation of Resources: Theory and Policy
,
George Allen & Unwin
,
London
.
29.
Hamilton
,
J. M.
,
Fowler
,
G. A.
, and
Belliveau
,
D. J.
, 1997, “
Mooring Vibration as a Source of Current Meter Error and Its Correction
,”
J. Atmos. Oceanic Technol.
,
14
(
3
), pp.
644
655
.
30.
Hurley
,
J.
,
de Young
,
B.
, and
Williams
,
C. D.
, 2008, “
Reducing Drag and Oscillation of Spheres Used for Buoyancy in Oceanographic Moorings
,”
J. Atmos. Oceanic Technol.
,
25
(
10
), pp.
1823
1833
.
31.
Perkins
,
C. D.
, and
Hage
,
R. E.
, 1960,
Airplane Performance, Stability and Control
,
John Wiley and Sons
,
Chichester
.
32.
Rawson
,
K. J.
, and
Tupper
,
E. C.
, 1984,
Basic Ship Theory
,
3rd ed.
,
Longman Scientific & Technical
,
London
, Vol.
2
.
33.
Wieselsberger
,
C.
, 1922, “
New Data on the Laws of Fluid Resistance
,” National Advisory Council for Aeronautics, NACA Technical Note No. 84, Translated from Physikalische Zeitschrift, Vol. 22.
34.
Wieselsberger
,
C.
, 1922, “
Further Information on the Laws of Fluid Resistance
,” National Advisory Council for Aeronautics, NACA Technical Note No. 121, Translated from Physikalische Zeitschrift, Vol. 23.
35.
Buckingham
,
E.
, 1914, “
On Physically Similar Systems: Illustrations of the Use of Dimensional Equations
,”
Phys. Rev.
,
4
(
4
), pp.
345
376
.
36.
Streeter
,
V. L.
, and
Wylie
,
E. B.
, 1975,
Fluid Mechanics
,
6th ed.
,
McGraw-Hill
,
London
.
37.
White
,
F. M.
, 2003,
Fluid Mechanics
,
5th ed.
,
McGraw Hill
,
London
.
38.
Carlton
,
J.
, 2007,
Marine Propellers and Propulsion
,
2nd ed.
,
Butterworth-Heinemann
,
Oxford
.
39.
Moody
,
L. F.
, 1944, “
Friction Factors for Pipe Flow
,”
Trans. Am. Soc. Mech. Eng.
,
66
, pp.
671
684
.
40.
Miesen
,
R.
, and
Boersma
,
B. J.
, 1995, “
Hydrodynamic Stability of a Sheared Liquid Film
,”
J. Fluid Mech.
,
301
, pp.
175
202
.
41.
Murray
,
F. W.
, 1967, “
On the Computation of Saturation Vapor Pressure
,”
J. Appl. Meteorol.
,
6
, pp.
203
204
.
42.
Ridgway
,
N. M.
, 1969, “
Temperature and Salinity of Sea Water at the Ocean Floor in the New Zealand Region
,”
New Zealand J. Mar. Freshwater Res.
,
3
, pp.
57
72
.
43.
Rouse
,
H.
, 1961,
Fluid Mechanics for Hydraulic Engineers
,
Dover
,
New York
.
44.
Coles
,
D.
, and
Wadcock
,
A. L.
, 1979, “
Flying Hot-Wire Study of Flow Past an NACA 4412 Airfoil at Maximum Lift
,”
AIAA J.
,
17
(
4
), pp.
321
329
.
45.
Thole
,
K. A.
,
Bogard
,
D. G.
, and
Whan-Tong
,
J. L.
, 1994, “
Generating High Freestream Turbulence Levels
,”
Exp. Fluids
,
17
, pp.
375
380
.
46.
Barker
,
S. J.
, 1979, “
Experiments on Heat-Stabilized Laminar Boundary Layers in a Tube
,”
Twelfth Symposium (on) Naval Hydrodynamics
,
National Academy of Sciences
,
Washington
, pp.
77
85
.
47.
Ashill
,
P. R.
,
Brown
,
D.
,
Muylaert
,
J.
,
Onorario
,
M.
,
Schmitt
,
V.
, and
Stanewsky
,
E.
, 1994, “
Requirements for Experiments for CFD Validation
,” A Selection of Experimental Test Cases for the Validation of CFD Codes, Vol. 1 of NATO AGARD Advisory Report #303, pp.
35
49
.
48.
Matsubara
,
M.
, and
Alfredsson
,
P. H.
, 2001, “
Disturbance Growth in Boundary Layers Subjected to Free-Stream Turbulence
,”
J. Fluid Mech.
,
430
, pp.
149
168
.
49.
Mans
,
J. E.
,
Kadijk
,
C.
,
de Lange
,
H. C.
, and
van Steenhoven
,
A. A.
, 2005, “
Breakdown in a Boundary Layer Exposed to Free-Stream Turbulence
,”
Exp. Fluids
,
39
(
6
), pp.
1071
1083
.
50.
Haines
,
A. B.
, and
Young
,
A. D.
, 1994, “
Scale Effects on Aircraft and Weapon Aerodynamics
,” Paper AGARDograph 323, North Atlantic Treaty Organization Advisory Group for Aerospace Research & Development, produced at the request of the Fluid Dynamics Panel of AGARD.
51.
Thole
,
K. A.
, and
Bogard
,
D. G.
, 1996, “
High Freestream Turbulence Effects on Turbulent Boundary Layers
,”
ASME J. Fluids Eng.
,
118
(
2
), pp.
276
284
.
52.
Dryden
,
H. L.
, and
Kuethe
,
A. M.
, 1931, “
Effect of Turbulence in Wind-Tunnel Measurements
,” National Advisory Council for Aeronautics. NACA Technical Report No. 342.
53.
Zarin
,
N. A.
, 1969, “
Measurement of Non-Continuum and Turbulence Effects on Subsonic Sphere Drag
,” Ph.D. Thesis, University of Michigan, Ann Arbor.
54.
Bailey
,
A. B.
, and
Hiatt
,
J.
, 1972, “
Sphere Drag Coefficients for a Broad Range of Mach and Reynolds Numbers
,”
AIAA J.
,
10
(
11
), pp.
1436
1440
.
55.
Bailey
,
A. B.
, and
Hiatt
,
J.
, 1971, “
Free-Flight Measurements of Sphere Drag at Subsonic, Transonic, Supersonic, and Hypersonic Speeds for Continuum, Transition, and Near Free Molecular Flow Conditions
,” Paper AEDC-TR-70-291, Arnold Engineering Development Center, (U.S.) Air Force Systems Command.
56.
Sivier
,
K. H.
, 1967, “
Subsonic Sphere Drag Measurements at Intermediate Reynolds Numbers
,” Ph.D. Thesis, University of Michigan, Ann Arbor.
57.
Ingebo
,
R. D.
, 1956, “
Drag Coefficients for Droplets and Solid Spheres in Clouds Accelerating in Airstreams
,” National Advisory Council for Aeronautics, NACA Technical Note 3762.
58.
Fassio
,
F.
, and
Probstein
,
R. F.
, 1970, “
Dusty Hypersonic Flows
,”
AIAA J.
,
8
(
4
), pp.
772
779
.
59.
Dryden
,
H. L.
, and
Kuethe
,
A. M.
, 1930, “
The Measurement of Fluctuations of Air Speed by the Hot-Wire Anemometer
,” National Advisory Council for Aeronautics. NACA Technical Report No. 320.
60.
Nihoul
,
J. C. J.
, 1980, “
The Turbulent Ocean
,”
Marine Turbulence
, edited by
J. C. J.
Nihoul
, Vol.
28
of Elsevier Oceanography Series,
Elsevier Scientific
,
Amsterdam
, pp.
1
19
.
61.
Monin
,
A. S.
,
Kamenkovich
,
V. M.
, and
Kort
,
V. G.
, 1977,
Variability of the Oceans
,
John Wiley and Sons
,
London
, translated from the Russian by J. J. Lumley.
62.
Osborn
,
T. R.
, 1980, “
Estimate of the Local Rate of Vertical Diffusion From Dissipation Measurements
,”
J. Phys. Oceanogr.
,
10
, pp.
83
89
.
63.
Thorpe
,
S. A.
, 2004, “
Recent Developments in the Study of Ocean Turbulence
,”
Ann. Rev. Earth Planet. Sci.
,
32
, pp.
91
109
.
64.
Dillon
,
T. M.
,
Barth
,
J. A.
,
Erofeev
,
A. J.
,
May
,
G. H.
, and
Wijesekera
,
H. W.
, 2003, “
MicroSoar: A New Instrument for Measuring Microscale Turbulence From Rapidly Moving Submerged Platforms
,”
J. Atmos. Oceanic Technol.
,
20
, pp.
1671
1684
.
65.
Briscoe
,
M. G.
, 1975, “
Preliminary Results From the Trimoored Internal Wave Experiment (IWEX)
,”
J. Geophys. Res.
,
80
(
27
), pp.
3872
3884
.
66.
Sanford
,
T. B.
,
Carlson
,
J. A.
,
Dunlap
,
J. H.
,
Prater
,
M. D.
, and
Lien
,
R.-C.
, 1999, “
An Electro-Magnetic Vorticity and Velocity Sensor for Observing Finescale Kinetic Fluctuations in the Ocean
,”
J. Atmos. Oceanic Technol.
,
16
, pp.
1647
1667
.
67.
van Haren
,
H.
, and
Gostiaux
,
L.
, 2009, “
High-Resolution Open-Ocean Temperature Spectra
,”
J. Geophys. Res.
,
114
,
C05005
.
68.
Gargett
,
A. E.
, and
Schmitt
,
R. W.
, 1982, “
Observations of Salt Fingers in the Central Waters of the Eastern North Pacific
,”
J. Geophys. Res.
,
87
, pp.
8017
8029
.
69.
Grant
,
H. L.
,
Stewart
,
R. W.
, and
Moilliet
,
A.
, 1962, “
Turbulence Spectra From a Tidal Channel
,”
J. Fluid Mech.
,
12
, pp.
241
268
.
70.
Stewart
,
R. W.
, and
Grant
,
H. L.
, 1999, “
Early Measurements of Turbulence in the Ocean: Motives and Techniques
,”
J. Atmos. Oceanic Technol.
,
16
, pp.
1467
1473
.
71.
Levine
,
E. R.
, and
Lueck
,
R. G.
, 1999, “
Turbulence Measurements for an Autonomous Underwater Vehicle
,”
J. Atmos. Oceanic Technol.
,
16
, pp.
1533
1544
.
72.
Lin
,
C. C.
, 1955,
The Theory of Hydrodynamic Stability
,
Cambridge University Press
,
Cambridge
.
73.
Taylor
,
G. I.
, 1938, “
The Spectrum of Turbulence
,”
Proc. R. Soc. London Ser. A
,
164
(
919
), pp.
476
490
.
74.
Durbin
,
P.
, and
Wu
,
X.
, 2007, “
Transition Beneath Vortical Disturbances
,”
Ann. Rev. Fluid Mech.
,
39
, pp.
107
128
.
75.
Eckhardt
,
B. T.
,
Schneider
,
M.
,
Hof
,
B.
, and
Westerweel
,
J.
, 2007, “
Turbulence Transition in Pipe Flow
,”
Ann. Rev. Fluid Mech.
,
39
, pp.
447
468
.
76.
Hoerner
,
S.
, 1935, “
Tests of Spheres With Reference to Reynolds Number, Turbulence, and Surface Roughness
,”
National Advisory Council for Aeronautics
, NACA Technical Memorandum No. 777, translation of Luftfahrtforschung, ‘Versuche mit Kugeln…’, March 28, 1935, pp.
42
54
.
77.
Maestrello
,
L.
, 2003, “
Laminarization of Turbulent Boundary Layer on Flexible and Rigid Surfaces
,”
AIAA J.
,
41
(
1
), pp.
34
39
.
78.
Jansen
,
K.
, 1995, “
Preliminary Large-Eddy Simulations of Flow Around a NACA 4412 Airfoil Using Unstructured Grids
,” Stanford University Center for Turbulence Research Annual Research Briefs, pp.
61
72
.
79.
Nakayama
,
A.
, and
Patel
,
V. C.
, 1974, “
Calculation of the Viscous Resistance of Bodies of Revolution
,”
J. Hydronautics
,
8
(
4
), pp.
154
162
.
80.
Zingg
,
D. W.
, and
Godin
,
P.
, 2009, “
A Perspective on Turbulence Models for Aerodynamic Flows
,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
327
335
.
81.
Various
, 1999,
The Times Comprehensive Atlas of the World
,
10th ed.
,
Times Books
,
London
, the WOCE data in Fig. 4, p. 32 were provided by Ocean Circulation and Climate Division, Southampton Oceanographic Centre.
82.
Noyes
,
J.
,
Asher
,
G. J.
,
Jones
,
O. C.
, and
Phillips
,
G. F.
, Eds., 1995,
Tables of Physical and Chemical Constants
,
16th ed.
,
Longman Group Limited
,
Essex, UK
, Sec. 2.7.9 was contributed by Sir E. Bullard.
83.
Stewart
,
J.
, 1987,
Calculus
,
Brooks/Cole
,
Pacific Grove, CA
.
84.
Shapiro
,
A. H.
, 1953,
The Dynamics and Thermodynamics of Compressible Fluid Flow
,
Wiley
,
Chichester
, Vol.
1
.
85.
Brown
,
P. P.
, and
Lawler
,
D. F.
, 2003, “
Sphere Drag and Settling Velocity Revisited
,”
J. Environ. Eng.
,
129
(
3
), pp.
222
231
.
86.
Bacon
,
D. L.
, and
Reid
,
E. G.
, 1924, “
The Resistance of Spheres in Wind Tunnels and in Air
,” National Advisory Council for Aeronautics, NACA Report No. 185.
87.
Fage
,
A.
, 1936, “
Experiments on a Sphere at Critical Reynolds Numbers
,” Reports and Memoranda No. 1766, (U.K.) Aeronautical Research Council.
88.
Achenbach
,
E.
, 1972, “
Experiments on the Flow Past Spheres at Very High Reynolds Numbers
,”
J. Fluid Mech.
,
54
, pp.
565
575
.
89.
Cebeci
,
T.
, and
Smith
,
A. M. O.
, 1974,
Analysis of Turbulent Boundary Layers
,
Academic
,
London
.
90.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
, 1978,
Bubbles, Drops, and Particles
,
Academic
,
London
.
91.
Robertson
,
J. M.
, and
Clark
,
M. E.
, 1962, “
The Drag of Elongated Bodies Over a Wide Reynolds Number Range
,”
J. Aerospace Sci.
,
29
, pp.
842
846
.
92.
Judd
,
M.
,
Vlajinac
,
M.
, and
Covert
,
E. E.
, 1971, “
Sting-Free Drag Measurements on Ellipsoidal Cylinders at Transition Reynolds Numbers
,”
J. Fluid Mech.
,
48
(
2
), pp.
353
364
.
93.
Matthews
,
C. W.
, 1951, “
A Comparison of the Experimental Subsonic Pressure Distributions About Several Bodies of Revolution With Pressure Distributions Computed by Means of the Linearized Theory
,” National Advisory Council for Aeronautics, NACA Report No. 1155.
94.
Chevray
,
R.
, 1968, “
The Turbulent Wake of a Body of Revolution
,”
ASME J. Basic Eng.
,
90
, pp.
275
284
.
95.
Cramer
,
R. H.
, 1973, “
Earliest Classic Result for the Turbulent Hydraulic Wake Behind Body of Revolution
,”
J. Hydronautics
,
7
(
2
), pp.
95
96
.
96.
Patel
,
V.
,
Nakayama
,
C. A.
, and
Damian
,
R.
, 1974, “
Measurements in the Thick Axisymmetric Turbulent Boundary Layer Near the Tail of a Body of Revolution
,”
J. Fluid Mech.
,
63
(
2
), pp.
345
367
.
97.
Costis
,
C. E.
,
Hoang
,
N. T.
, and
Telionis
,
D. P.
1989, “
Laminar Separating Flow Over a Prolate Spheroid
,”
J. Aircraft
,
26
(
9
), pp.
810
816
.
98.
Kreplin
,
H.-P.
, 1994, “
Three-Dimensional Boundary Layer and Flow Field Data of an Inclined Prolate Spheroid
,” A Selection of Experimental Test Cases for the Validation of CFD Codes, Vol 2 of NATO AGARD Advisory Report #303, pp.
C2,1
C2,12
.
99.
Wetzel
,
T. G.
, 1996, “
Unsteady Flow Over a 6:1 Prolate Spheroid
,”
Ph.D. Thesis
,
Dept. of Aerospace & Ocean Engineering, Virginia Polytechnic Institute and State University
,
Blacksburg
, contributed to [104].
100.
Wetzel
,
T. G.
,
Simpson
,
R. L.
, and
Chesnakas
,
C. J.
, 1998, “
Measurement of Three-Dimensional Crossflow Separation
,”
AIAA J.
,
36
(
4
), pp.
557
564
, contributed to [104].
101.
Wetzel
,
T. G.
, and
Simpson
,
R. L.
, 1998, “
Unsteady Crossflow Separation Location Measurements on a Maneuvering 6:1 Prolate Spheroid
,”
AIAA J.
,
36
(
11
), pp.
2063
2071
, contributed to [104].
102.
Chesnakas
,
C. J.
, and
Simpson
,
R. L.
, 1997, “
Detailed Investigation of the Three-Dimensional Separation About a 6:1 Prolate Spheroid
,”
AIAA J.
,
35
(
6
), pp.
990
999
, contributed to [19].
103.
Chesnakas
,
C. J.
, and
Simpson
,
R. L.
, 1996, “
Measurements of the Turbulence Structure in the Vicinity of a 3-D Separation
,”
ASME J. Fluids Eng.
,
118
, pp.
268
275
, contributed to [19].
104.
Simpson
,
R. L.
, 2010, “
Index of /∼simpson
,” online database accessed December 2010.
105.
Wu
,
H. W.
, and
Shiue
,
H. C.
, 1997, “
Effect of Heated Underwater Boundary Layer of a Prolate Spheroid on Viscous Drag
,”
Exp. Fluids
,
23
, pp.
504
512
.
106.
Abbott
,
I. H.
, 1937, “
Fuselage-Drag Tests in the Variable-Density Wind Tunnel: Streamline Bodies of Revolution, Fineness Ratio of 5
,” National Advisory Council for Aeronautics, NACA Technical Note No. 614.
107.
Abbott
,
I. H.
, 1931, “
Airship Model Tests in the Variable Density Wind Tunnel
,” National Advisory Council for Aeronautics, NACA Report No. 394.
108.
Zahm
,
A. F.
,
Smith
,
R. H.
, and
Hill
,
G. C.
, 1923, “
The Drag of C Class Airship Hull With Varying Length of Cylindric Midships
,” National Advisory Council for Aeronautics, NACA Report No. 138.
109.
Zahm
,
A. F.
,
Smith
,
R. H.
, and
Louden
,
F. A.
, 1927, “
Drag of C-Class Airships Hulls of Various Fineness Ratios
,” National Advisory Council for Aeronautics, NACA Report No. 291.
110.
Munzner
,
H.
, and
Reichardt
,
H.
, 1944, “
Rotationssymmetrische Quellsenkenkörper Mit Überwiegend Konstanter Druckverteilung
,” Paper 44-P-15-UM-6616, Kaiser Wilhelm-Institut für Strömungsforschung, Göttingen, aerodynamische Versuchsanstalt.
111.
Gross
,
L. W.
, and
Pfenninger
,
W.
, 1963, “
Experimental and Theoretical Investigation of a Reichardt Body of Revolution With Low Drag Suction, NASA-Ames 12 Foot Pressure Wind Tunnel
,” Paper NOR-63-46, Northrop Norair.
112.
Lyon
,
H. M.
, 1932, “
The Effect of Turbulence on the Drag of Airship Models
,” Reports and Memoranda No. 1511, (U.K.) Aeronautical Research Council.
113.
Lyon
,
H. M.
, 1934, “
A Study of the Flow in the Boundary Layer of Streamline Bodies
,” Reports and Memoranda No. 1622, (U.K.) Aeronautical Research Council.
114.
Gertler
,
M.
, 1950, “
Resistance Experiments on a Systematic Series of Streamlined Bodies of Revolution—For Application to the Design of High-Speed Submarines
,” Paper C-297, David Taylor Model Basin, Washington.
115.
Huang
,
T. T.
,
Santelli
,
N.
, and
Belt
,
G.
, 1979, “
Stern Boundary-Layer Flow on Axisymmetric Bodies
,”
Twelfth Symposium (on) Naval Hydrodynamics
,
National Academy of Sciences
,
Washington
, pp.
127
157
.
116.
Huang
,
T. T.
, and
Groves
,
N. C.
, 1981, “
Effective Wake: Theory and Experiment
,”
Proceedings of the Thirteenth Symposium on Naval Hydrodynamics
, The Shipbuilding Research Association of Japan, Tokyo, pp.
651
673
.
117.
Huggins
,
A.
, and
Packwood
,
A. R.
, 1995, “
Wind Tunnel Experiments on a Fully Appended Laminar Flow Submersible for Oceanographic Survey
,”
Ocean Eng.
,
22
(
2
), pp.
207
221
.
118.
Packwood
,
A. R.
, and
Huggins
,
A.
, 1994, “
Afterbody Shaping and Transition Prediction for a Laminar Flow Underwater Vehicle
,”
Ocean Eng.
,
21
(
5
), pp.
445
459
.
119.
Parsons
,
J. S.
,
Goodson
,
R. E.
, and
Goldschmied
,
F. R.
, 1974, “
Shaping of Axisymmetric Bodies for Minimum Drag in Incompressible Flow
,”
J. Hydronautics
,
8
(
3
), pp.
100
107
.
120.
Smith
,
A. M. O.
,
Stokes
,
T. R.
, Jr.
, and
Lee
,
R. S.
, 1981, “
Optimum Tail Shapes for Bodies of Revolution
,”
J. Hydronautics
,
15
(
1–4
), pp.
67
73
.
121.
Ward
,
B.
, 1993, “
Forces on a Cylinder in a Vortex Flow Field
,” M. Phil. Thesis, University of Southampton, Southampton UK.
122.
Whitfield
,
C. C.
, 1999, “
Steady and Unsteady Force and Moment Data on a DARPA2 Submarine
,” Master’s Thesis, Dept. of Aerospace & Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA.
123.
Hosder
,
S.
, 2001, “
Unsteady Skin-Friction Measurements on a Maneuvering DARPA2 Suboff Model
,” Master’s Thesis, Dept. of Aerospace & Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, online database accessed December 2010.
124.
Hosder
,
S.
, and
Simpson
,
R.
, 2007, “
Experimental Investigation of Unsteady Flow Separation on a Maneuvering Axisymmetric Body
,”
AIAA J.
,
44
(
4
), pp.
1286
1295
.
125.
Hammache
,
M. F.
,
Browand
,
K.
, and
Blackwelder
,
R. F.
, 2002, “
Whole-Field Velocity Measurements Around an Axisymmetric Body With a Stratford-Smith Pressure Recovery
,”
J. Fluid Mech.
,
461
, pp.
1
24
.
126.
Bridges
,
D. H.
,
Blanton
,
J. N.
,
Brewer
,
W. H.
, and
Park
,
J. T.
, 2003, “
Experimental Investigation of the Flow Past a Submarine at Angle of Drift
,”
AIAA J.
,
41
(
1
), pp.
71
81
.
127.
Joubert
,
P. N.
,
Sinclair
,
T. J.
, and
Hoffmann
,
P. H.
, 1978, “
A Further Study of Bodies of Revolution
,”
J. Ship Res.
,
22
(
1
), pp.
54
63
.
128.
Hoang
,
N. T.
,
Rediniotis
,
O. K.
, and
Telionis
,
D. P.
, 1999, “
Hemisphere Cylinder at Incidence at Intermediate to High Reynolds Numbers
,”
AIAA J.
,
37
(
10
), pp.
1240
1250
.
129.
Patel
,
V. C.
, and
Baek
,
J. H.
, 1987, “
Boundary Layers in Planes of Symmetry. I—Experiments in Turbulent Flow
,”
AIAA J.
,
25
(
4
), pp.
550
559
.
130.
Barberis
,
D.
, and
Molton
,
P.
, 1995, “
Experimental Study of Three-Dimensional Separation on a Large-Scale Model
,”
AIAA J.
,
33
(
11
), pp.
2107
2113
.
131.
Schetz
,
J. A.
, and
Jakubowski
,
A. K.
, 1975, “
Experimental Studies of the Turbulent Wake Behind Self-Propelled Slender Bodies
,”
AIAA J.
,
13
(
12
), pp.
1568
1575
.
132.
Abbott
,
I. H.
, 1932, “
The Drag of Two Streamline Bodies as Affected by Protuberances and Appendages
,” National Advisory Council for Aeronautics, NACA Report No. 451.
133.
Zahm
,
A. F.
,
Smith
,
R. H.
, and
Louden
,
F. A.
, 1922, “
Air forces, Moments and Damping on Model of Fleet Airship Shenandoah
,” National Advisory Council for Aeronautics, NACA Report No. 215.
134.
Freeman
,
H. B.
, 1932, “
Measurements of Flow in the Boundary Layer of a 1/40-Scale Model of the U. S. Airship ‘Akron’
,” National Advisory Council for Aeronautics, NACA Report No. 430.
135.
Freeman
,
H. B.
, 1932, “
Force Measurements on a 1/40-Scale Model of the U.S. Airship ‘Akron’
,” National Advisory Council for Aeronautics, NACA Report No. 432.
136.
Ward
,
B.
, and
Wilson
,
P. A.
, 1992, “
Forces on a Body of Revolution in a Vortex Flow Field
,”
Trans. R. Inst. Naval Arch. Part B
,
134
, pp.
329
339
.
137.
Groves
,
N. C.
,
Huang
,
T. T.
, and
Chang
,
M. S.
, 1989, “
Geometric Characteristics of DARPA SUB-OFF Models (DTRC Model Nos. 5470 And 5471)
,” Paper DTRC/SHD-1298-01, David Taylor Research Center, Bethesda, MD.
138.
Conn
,
J. F.
,
Lackenby
,
C. H.
, and
Walker
,
W. P.
, 1953, “
B.S.R.A. Resistance Experiments on the ‘Lucy Ashton’, Part II: The Ship-Model Correlation for the Naked Hull Conditions
,”
Trans. Inst. Naval Arch.
,
95
, pp.
350
436
.
139.
Moor
,
D. I.
, 1960, “
The Resistance Constant of Some 0.80 Cb Forms
,”
Trans. R. Ins. Naval Arch.
,
102
, pp.
93
152
.
140.
Patel
,
V. C.
, and
Sarda
,
O. P.
, 1990, “
Mean-Flow and Turbulence Measurements in the Boundary Layer and Wake of a Ship Double Model
,”
Exp. Fluids
,
8
(
6
), pp.
319
335
.
141.
Joubert
,
P. N.
, and
Matheson
,
N.
, 1970, “
Wind Tunnel Tests of Two ‘Lucy Ashton’ Reflex Geosims
,”
J. Ship Res.
,
14
(
4
), pp.
241
276
.
142.
Matheson
,
N.
, and
Joubert
,
P. N.
, 1973, “
Experimental Determination of the Components of Resistance of a Small 0.80 Cb Tanker Model
,”
J. Ship Res.
,
17
(
3
), pp.
162
180
.
143.
Matheson
,
N.
, and
Joubert
,
P. N.
, 1974, “
A Note on the Resistance of Bodies of Revolution and Ship Forms
,”
J. Ship Res.
,
18
(
3
), pp.
153
168
.
144.
Chevray
,
R.
, 1967, “
The Turbulent Wake of a Body of Revolution
,” Ph.D. Thesis, University of Iowa, Iowa City.
145.
Patel
,
V. C.
,
Nakayama
,
A.
, and
Damian
,
R.
, 1973, “
An Experimental Study of the Thick Turbulent Boundary Layer Near the Tail of a Body of Revolution
,” Paper 142, Iowa Institute of Hydraulic Research.
146.
Blanco
,
M.
, 2007, “
A Newton-Krylov Solver With a Loosely-Coupled Turbulence Model for Aerodynamic Flows
,” Ph.D. Thesis, University of Toronto, Toronto.
147.
Drew
,
D. A.
, 1983, “
Mathematical Modeling of Two-Phase Flows
,”
Ann. Rev. Fluid Mech.
,
15
, pp.
261
291
.
148.
Vlajinac
,
M.
, and
Covert
,
E. E.
, 1972, “
Sting-Free Measurements of Sphere Drag in Laminar Flow
,”
J. Fluid Mech.
,
54
, pp.
385
392
.
149.
Roos
,
F. W.
, and
Willmarth
,
W. W.
, 1971, “
Some Experimental Results on Sphere and Disk Drag
,”
AIAA J.
,
9
(
2
), pp.
285
291
.
150.
Ramaprian
,
B. R.
,
Patel
,
V. C.
, and
Choi
,
D. H.
, 1981, “
Mean-Flow Measurements in the Three- Dimensional Boundary Layer Over a Body of Revolution at Incidence
,”
J. Fluid Mech.
,
103
, pp.
479
504
.
You do not currently have access to this content.