Vortical structures and associated instabilities of appended Athena wetted transom flow in full-scale conditions are studied using DES to explain the source of dominant transom flow frequency, including verification and validation using full-scale experimental data. The results are also compared with model-scale bare and appended hull predictions and experiments. The grid used for the validation is sufficiently fine as it resolves 70% and 91% of the experimental inertial subrange and turbulent kinetic energy values, respectively. The model-scale bare and appended hull resistance predictions compare within 2.5%D and 5.4%D of the experimental data D, respectively. The full-scale appended hull resistance predictions compare within 4.2%D of the extrapolated data using the ITTC line. The averaged comparison error of the full-scale transom wave elevation mean, RMS and dominant frequency predictions and the experimental data is 8.1%D, and the predictions are validated at an averaged 11.2%D interval. The transom wave elevation unsteadiness is attributed to the Karman-like transom vortex shedding as both show the same dominant frequency. The Karman-like instability shows St = 0.148 for the bare hull and St = 0.103 ± 4.4% for model- and full-scale appended hull. The appended hull simulations also predict: horseshoe vortices at the juncture of rudder-hull with St = 0.146 ± 3.9% and strut-hull with St = 0.053 ± 2%; shear layer instability at the strut-hull intersection with St = 0.0067 ± 3%; and unsteady sinkage and trim induced by transom vortex shedding with St = 2.19. The instabilities do not show significant variation on scale, propeller or motions. The bare hull simulation also predicts flapping-like instability in the wake with St = 0.144.

References

1.
Wilson
,
W.
,
Fu
,
T.
, and
Pence
,
A.
, 2006, “
Comparison of Predicted and Measured Wave Field for Model 5365 Hull Form
,” Naval Surface Warfare Center, Report No. NSWCCD-50-TR-2006/014.
2.
Wilson
,
R. V.
,
Carrica
,
P. M.
, and
Stern
,
F.
, 2006, “
URANS Simulation for a High-Speed Transom Stern Ship with Breaking Waves
,”
Int. J. Comput. Fluid Dyn.
,
20
(
2
), pp.
105
125
.
3.
Wyatt
,
D. C.
,
Fu
,
T. C.
,
Taylor
,
G. L.
,
Terrill
,
E. J.
,
Xing
,
T.
,
Bhushan
,
S.
,
O’Shea
,
T. T.
, and
Dommermuth
,
D. G.
, 2008, “
A Comparison of Full-Scale Experimental Measurements and Computational Predictions of the Transom-Stern Wave of the R/V Athena I
,”
Proceedings of the 27th Symposium on Naval Hydrodynamics
, Seoul, South Korea, Oct. 5–10,
2
, pp.
3
17
.
4.
Drazen
,
D.
,
Fulletron
,
A. M.
,
Fu
,
T.
,
Beale
,
K.
,
O’Shea
,
T. T.
,
Bruker
,
K. A.
,
Dommermuth
,
D. G.
,
Wyatt
,
D. C.
,
Bhushan
,
S.
,
Carrica
,
P.
, and
Stern
,
F.
, 2010, “
A Comparison of Model-Scale Experimental Measurements and Computational Predictions for a Large Transom-Stern Wave
,”
Proceedings of the 28th Symposium on Naval Hydrodynamics
, Pasadena, California, 12–17, September 2010.
5.
Coleman
,
R. M.
, 1985, “
Nonlinear Flow about a Three-Dimensional Transom Stern
,”
Proceedings of the 4th International Conference on Numerical Ship Hydrodynamics
, Washington, DC, USA, pp.
234
245
.
6.
Wyatt
,
D. C.
, and
Dommermuth
D. G.
, 2006, “
Semi-Empirical Prediction of Breaking Stern Waves
,”
Proceedings of the 26th Symposium on Naval Hydrodynamics
, Rome, Italy, Sept. 17–22, pp.
181
192
.
7.
Huan
,
J. C.
, and
Huang
,
T. T.
, 2007, “
Surface Ship Total Resistance Prediction based on a Nonlinear Free-Surface Potential Flow Solver and a Reynolds-Averaged Navier-Stokes Viscous Correction
,”
J. Ship Res.
,
51
(
1
), pp.
47
64
.
8.
Maki
,
K. J.
,
Iafrati
,
A.
,
Rhee
,
S.
,
Beck
,
R.
, and
Troesch
,
A.
, 2006, “
The Transom-Stern Modeled as a Backward Facing Step
,”
Proceedings of the 26th Symposium on Naval Hydrodynamics
, Rome, Italy, Sept. 17–22, pp.
79
96
.
9.
Maki
,
K. J.
,
Troesch
,
A. W.
, and
Beck
,
R. F.
, 2008, “
Experiments of a Two-Dimensional Transom Stern Flow
,”
J. Ship Res.
,
52
(
4
), pp.
291
300
.
10.
Starke
,
B.
,
Raven
,
H.
, and
Ploeg
,
A.
, 2007, “
Computation of Transom-Stern Flows using a Steady Free-Surface Fitting RANS Method
,”
Proceedings of the 9th International Conference on Numerical Ship Hydrodynamics
, Ann Arbor, Michigan, Aug. 5–8, pp.
735
753
.
11.
Li
,
T.
, and
Matusiak
,
J.
, 2001, “
Simulation of a Modern Surface Ship with a Wetted Transom in a Viscous Flow
,”
Proceedings of the 11th International Offshore and Polar Engineering Conference
, Stavanger, Norway, June 17–22, pp.
570
576
.
12.
Fu
,
T.
,
Karion
,
A.
,
Pence
,
A.
,
James
,
R.
,
Walker
,
D.
, and
Ratcliffe
,
T.
, 2005, “
Characterization of the Steady Wave Field of a High Speed Transom Stern Ship-Model 5365 Hull Form
,” Naval Surface Warfare Center, Report No. NSWCCD-50-TR-2005/046.
13.
Xing
,
T.
,
Carrica
,
P. M.
, and
Stern
,
F.
, 2008, “
Computational Towing Tank Procedures for Single Run Curves of Resistance and Propulsion
,”
Trans. ASME J. Fluids Eng.
,
130
,
101102
.
14.
Bhushan
,
S.
,
Xing
,
T.
,
Carrica
,
P. M.
, and
Stern
,
F.
, 2009, “
Model- and Full-Scale URANS Simulations of Athena Resistance, Powering and Seakeeping, and 5415 Maneuvering
,”
J. Ship Res.
,
53
(
3
), pp.
1
21
.
15.
Crook
,
L. B.
, 1981, “
Powering Predictions for the R/V Athena (PG 94) Represented by Model 4950-1 with Design Propellers 4710 and 4711
,” David W. Taylor Naval Ship Research and Development Center, Report No. DTNSRDC/SPD-0833-05.
16.
Jenkins
,
D.
, 1984, “
Resistance Characteristics of the High Speed Transom Stern Ship R/V Athena in the Bare Hull Condition Represented by DTNSRDC Model 5365
,” Ship Performance Department Research & Development Report No. DTNSRDC-84/024.
17.
Sigurdson
,
L. W.
, 1995, “
The Structure and Control of Turbulent Reattaching Flow
,”
J. Fluid Mech.
,
248
, pp.
139
165
.
18.
Xing
,
T.
,
Kandasamy
,
M.
, and
Stern
,
F.
, 2007, “
Unsteady Free-Surface Wave-Induced Separation: Analysis of Turbulent Structures using Detached Eddy Simulation and Single-Phase Level-Set
,”
J. Turbul.
,
8
(
44
), pp.
1
35
.
19.
Kandasamy
,
M.
,
Xing
,
T.
, and
Stern
,
F.
, 2009, “
Unsteady Free-Surface Wave-Induced Separation: Vortical Structures and Instabilities
,”
J. Fluids Struct.
,
25
(
2
), pp.
343
363
.
20.
Xing
,
T.
,
Shao
,
J.
, and
Stern
,
F.
, 2007, “
BKW-RS-DES of Unsteady Vortical Flow for KVLCC2 at Large Drift Angles
,”
Proceedings of the 9th International Conference on Numerical Ship Hydrodynamics
, Ann Arbor, Michigan, Aug. 5–8, pp.
187
205
.
21.
Heredero
,
P. A.
,
Xing
,
T.
, and
Stern
,
F.
, 2010, “
URANS and DES for Wigley Hull at Extreme Drift Angles
,”
J. Mar. Sci. Technol.
,
15
(
4
), pp.
295
315
.
22.
Simpson
,
R. L.
, 2001, “
Junction Flows
,”
Ann. Rev. Fluid Mech.
,
33
, pp.
415
443
.
23.
Ripley
,
M. D.
, and
Pauley
,
L. L.
, 1993, “
The Unsteady Structure of Two Dimensional Steady Laminar Separation
,”
Phys. Fluids A
,
5
(
12
), pp.
3099
3106
.
24.
Carrica
,
P. M.
,
Huang
,
J.
,
Noack
,
R.
,
Kaushik
,
D.
,
Smith
,
B.
, and
Stern
,
F.
, 2010, “
Large-Scale DES Computations of the Forward Speed Diffraction and Pitch and Heave Problems for a Surface Combatant
,”
Comput. Fluids
,
39
, pp.
1095
1111
.
25.
Stern
,
F.
,
Wilson
,
R.
, and
Shao
,
J.
, 2006, “
Quantitative approach to V&V of CFD Simulations and Certification of CFD Codes
,”
Int. J. Numer. Methods Fluids
,
50
, pp.
1335
1355
.
26.
Wilson
,
R. V.
,
Stern
,
F.
,
Coleman
,
H. W.
, and
Paterson
,
E. G.
, 2001, “
Comprehensive Approach to Verification and Validation of CFD Simulations-Part 2: Application for RANS Simulation of a Cargo/Container Ship
,”
Trans. ASME J. Fluids Eng.
,
123
, pp.
803
810
.
27.
Xing
,
T.
, and
Stern
,
F.
, 2010, “
Factors of Safety for Richardson Extrapolation
,”
Trans. ASME J. Fluids Eng.
,
132
(
6
) p.
061403
.
28.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
, 1988, “
Eddies, Stream, and Convergence Zones in Turbulent Flows
,” Center for Turbulence Research, Report No. CTR-S88.
29.
Pope
,
S. B.
, 2000, “
Turbulent Flows
,” Cambridge University Press, Cambridge, pp.
184
188
.
30.
Bhushan
,
S.
,
Carrica
,
P.
, and
Yang
,
J.
, and
Stern
,
F.
, 2011, “
Scalability Studies and Large Grid Computations for Surface Combatant using CFDShip-Iowa
,”
Int. J. High Perform. Comput. Appl.
,
25
(
4
), pp.
466
487
.
31.
Spalart
,
P. R.
, 2009, “
Detached-Eddy Simulation
,”
Ann. Rev. Fluid Mech.
,
41
, pp.
181
202
.
You do not currently have access to this content.