This paper presents a three-dimensional simulation of a micro hydrocyclone for the separation of micron sized particles from liquid in a particulated sample. A theoretical analysis is performed to demonstrate the working principle of the micro hydrocyclone and develop design models. The geometry of the proposed device is designed based on the Bradley model, since it offers a lower cut-size, thus making it suitable for microfluidics applications. The operational parameters of the hydrocyclone are derived from a dimensional group model. The particle separation process inside the micro hydrocyclone is simulated by solving fluid flows using Navier-Stokes equations and particle dynamics using the Lagrangian approach in a Eulerean fluid. First, the numerical model is validated by comparing the simulation results with the experimental results for a macroscale hydrocyclone reported in the literature. Then, the micro hydrocyclone is simulated and the simulation results are presented and discussed in the context of the functioning of the micro hydrocyclone. Finally, the effects of inlet velocity, vortex finder diameter, particle size, and density on the separation efficiency are investigated. The proposed device can be easily integrated with micro-environments; thus, is suitable for lab-on-chip and microsystems development.

References

References
1.
Reyes
,
D. R.
,
Lossifidis
,
D.
,
Auroux
,
P. A.
, and
Manz
,
A.
, 2002, “
Micro Total Analysis Systems: Introduction, Theory, and Technology
,”
Anal. Chem.
,
74
, pp.
2623
2636
.
2.
Toner
,
M.
and
Irimia
,
D.
, 2005, “
Blood on a Chip
,”
Annu. Rev. Biomed. Eng.
,
7
, pp.
77
103
.
3.
Yamada
,
M.
,
Nakashima
,
M.
, and
Seki
,
M.
, 2004, “
Pinched Flow Fractionation: Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel
,”
Anal. Chem.
,
76
, pp.
5465
5471
.
4.
Yamada
,
M.
, and
Seki
,
M.
, 2005, “
Hydrodynamic Filtration for On-Chip Particle Concentration and Classification Utilizing Microfluidics
,”
Lab Chip
,
5
, pp.
1233
1239
.
5.
Yamada
,
M.
, and
Seki
,
M.
, 2006, “
Microfluidic Particle Sorter Employing Flow Splitting and Recombining
,”
Anal. Chem.
,
78
, pp.
1357
1362
.
6.
Wu
,
Z.
,
Hjort
,
K.
,
Wicher
,
G.
, and
Svenningsen
,
Å
, 2008, “
Microfluidic High Viability Neural Cell Separation Using Viscoelastically Tuned Hydrodynamic Spreading
,”
Biomed. Microdevices
,
10
, pp.
631
638
.
7.
Huang
,
L. R.
,
Cox
,
E. C.
,
Austin
,
R. H.
, and
Sturm
,
J. C.
, 2004, “
Continuous Particle Separation Through Deterministic Lateral Displacement
,”
Science
,
304
, pp.
987
990
.
8.
Zheng
,
S.
,
Tai
,
Y.
, and
Kasdan
,
H.
, 2005, “
A Micro Device for Separation of Erythrocytes and Leukocytes in Human Blood
,”
IEEE Eng. Med. Biol. Mag.
,
1
, pp.
1024
1027
.
9.
Davis
,
J. A.
,
Inglis
,
D. W.
,
Morton
,
K. J.
,
Lawrence
,
D. A.
,
Huang
,
L. R.
,
Chou
,
S. Y.
,
Sturm
,
J. C.
, and
Austin
,
R. H.
, 2006, “
Deterministic Hydrodynamics: Taking Blood Apart
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
, pp.
14779
14784
.
10.
Inglis
,
D. W.
,
Davis
,
J. A.
,
Austin
,
R. H.
, and
Sturm
,
J. C.
, 2006, “
Critical Particle Size for Fractionation by Deterministic Lateral Displacement
,”
Lab Chip
,
6
, pp.
655
658
.
11.
Yang
,
S.
,
Undar
,
A.
, and
Zahn
,
J. D.
, 2006, “
A Microfluidic Device for Continuous, Real Time Blood Plasma Separation
,”
Lab Chip
,
6
, pp.
871
880
.
12.
Shevkoplyas
,
S. S.
,
Yoshida
,
T.
, and
Munn
,
L. L.
, 2005, “
Biomimetic Auto Separation of Leukocytes From Whole Blood in a Microfluidic Device
,”
Anal Chem
,
77
, pp.
933
937
.
13.
Chen
,
X.
,
Cui
,
D. F.
,
Liu
,
C. C.
, and
Li
,
H.
, 2008, “
Micro-Fluidic Chip for Blood Cell Separation and Collection Based on Crossflow Filtration
,”
Sens. Actuators B
,
130
, pp.
216
221
.
14.
Xing
,
C.
,
Fu
,
C. D.
, and
Lu
,
Z.
, 2009, “
Isolation of Plasma from Whole Blood Using a Microfludic Chip in a Continuous Cross-Flow
,”
Chin. Sci. Bull.
,
54
, pp.
324
327
.
15.
Caridis
,
K. A.
and
Papathanasiou
,
T. D.
, 1997, “
Pressure Effects in Cross-Flow Microfiltration of Suspensions of Whole Bacterial Cells
,”
Bioprocess Eng.
,
16
, pp.
199
208
.
16.
VanDelinder
,
V.
, and
Groisman
,
A.
, 2007, “
Perfusion in Microfluidic Cross-Flow: Separation of White Blood Cells from Whole Blood and Exchange of Medium in a Continuous Flow
,”
Anal. Chem.
,
79
,
2023
2030
.
17.
Carlo
,
D. D.
,
Irimia
,
D.
,
Tompkins
,
R. G.
, and
Toner
,
M.
, 2007, “
Continuous Inertial Focusing, Ordering, and Separation of Particles in Microchannels
,”
Proc. Natl. Acad. Sci. U.S.A.
,
104
, pp.
18892
18897
.
18.
Bhagat
,
A. A.
,
Kuntaegowdanahalli
,
S. S.
, and
Papautsk
,
S. I.
, 2008, “
Continuous Particle Separation in Spiral Microchannels Using Dean Flows and Differential Migration
,”
Lab Chip
,
8
, pp.
1906
1914
.
19.
Bradley
,
D.
, 1965,
The Hydrocyclone
,
Pergamon
,
London
.
20.
Svarovsky
,
L.
, 1984,
Hydrocyclones
,
Holt, Rinehart and Winston
,
New York
.
21.
Chen
,
W.
,
Zydek
,
N.
, and
Parma
,
F.
, 2000, “
Evaluation of Hydrocyclone Models for Practical Applications
,”
Chem. Eng. J.
,
80
, pp.
295
303
.
22.
Knowles
,
S. R.
,
Woods
,
D. R.
, and
Feuerstein
,
I. A.
, 1973, “
The Velocity Distribution Within a Hydrocyclone Operating Without an Air Core
,”
Can. J. Chem. Eng.
,
51
, pp.
263
271
.
23.
Hsieh
,
K. T.
, and
Rajamani
,
R. K.
, 1991, “
Mathematical Model of the Hydrocyclone Based on Physics of Fluid Flow
,”
AIChE J.
,
37
(
5
), pp.
735
746
.
24.
Dai
,
G. Q.
,
Chen
,
W. M.
,
Li
,
J. M.
, and
Chu
,
L. Y.
, 1999, “
Experimental Study of Solid–Liquid Two-Phase Flow in a Hydrocyclone
,”
Chem. Eng. J.
,
74
, pp.
211
216
.
25.
Monrendon
,
T. C.
,
Hsieh
,
K. T.
, and
Rajamani
,
R. K.
, 1992, “
Fluid Flow Model of the Hydrocyclone: An Investigation of Device Dimensions
,”
Int. J. Min. Process.
,
35
, pp.
65
83
.
26.
Dyakowski
,
T.
,and
Williams
,
R. A.
, 1993, “
Modelling Turbulent Flow Within a Small-Diameter Hydrocyclone
,”
Chem. Eng. Sci.
,
48
, pp.
1143
1152
.
27.
Dyakowski
,
T.
,
Hornung
,
G.
, and
Williams
,
R. A.
, 1994, “
Simulation of Non-Newtonian Flow in a Hydrocyclone
,”
Trans. Inst. Chem. Eng.
,
72
, pp.
513
520
.
28.
Dyakowski
,
T.
, and
Williams
,
R. A.
, 1996, “
Prediction of High Solids Concentration Regions Within a Hydrocyclone
,”
Powder Technol.
,
87
, pp.
43
47
.
29.
Malhotra
,
A.
,
Branion
,
R. M. R.
, and
Hauptamnn
,
E. G.
, 1994, “
Modelling the Flow in a Hydrocyclone
,”
Can. J. Chem. Eng.
,
72
, pp.
953
960
.
30.
Schuetz
,
S.
,
Mayer
,
G.
,
Bierdel
,
M.
, and
Piesche
,
M.
, 2004, “
Investigations on the Flow and Separation Behaviour of Hydrocyclones Using Computational Fluid Dynamics
,”
Int. J. Min. Process.
,
73
, pp.
229
237
.
31.
Nowakowski
,
A. F.
,
Cullivan
,
J. C.
,
Williams
,
R. A.
, and
Dyakowski
,
T.
, 2004, “
Application of CFD to Modelling of the Flow in Hydrocyclone. Is This a Realizable Option or Still a Research Challenge?
Minerals Eng.
,
17
, pp.
661
669
.
32.
Cullivan
,
J. C.
,
Williams
,
R. A.
,
Dyakowski
,
T.
, and
Cross
,
C. R.
, 2004, “
New Understanding of a Hydrocyclone Flow Field and Separation Mechanism from Computational Fluid Dynamics
,”
Minerals Eng.
,
17
, pp.
651
660
.
33.
Delgadillo
,
J.
A.
,
and
Rajamani
,
R. K.
, 2005, “
A Comparative Study of Three Turbulence-Closure Models for the Hydrocyclone Problem
,”
Int. J. Min. Process.
,
77
(
4
), pp.
217
230
.
34.
He
,
P.
,
Salcudean
,
M.
, and
Gartshore
,
I. S.
, 1999, “
A Numerical Simulation of Hydrocyclones
,”
Trans. Inst. Chem. Eng.
,
77
, pp.
429
441
.
35.
Nowakowski
,
A. F.
,
Kraipech
,
W.
,
Williams
,
R. A.
, and
Dyakowski
,
T.
, 2000, “
The Hydrodynamics of a Hydrocyclone Based on a Three-Dimensional Multi-Continuum Model
,”
Chem. Eng. J.
,
80
, pp.
275
282
.
36.
Petty
,
C. A.
and
Parks
,
S. M.
, 2001, “
Flow Predictions Within Hydrocyclones
,”
Filtration & Separation
,
38
, pp.
28
34
.
37.
Statie
,
E. C.
Salcudean
,
M.E.
and
Gartshore
,
I. S.
, 2001, “
The influence of hydrocyclone geometry on separation and fibre classification
,”
Filt Sep.
,
38
, pp.
36
42
.
38.
Launder
,
B. E.
, 1989, “
Second-Moment Closure: Present.and Future?
,”
Int. J. Heat Fluid Fl.
,
10
, pp.
282
300
.
39.
Wolfshtein
,
M.
, 1969, “
The Velocity and Temperature Distribution in One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Fluid Flow
,
12
, pp.
301
318
.
40.
Chen
,
H. C.
, and
Patel
,
V. C.
, 1988, “
Near-Wall Turbulence Models for Complex Flows Including Separation
,”
AIAA J.
,
26
, pp.
641
648
.
41.
Haider
,
A.
and
Levenspiel
O.
, 1989, “
Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles
,”
Powder Technol.
,
58
, pp.
63
70
.
42.
Yang
,
I. H.
,
Shin
,
C. B.
,
Kim
,
T. H.
, and
Kim
,
S.
, 2004, “
A Three-Dimensional Simulation of a Hydrocyclone for the Sludge Separation in Water Purifying Plants and Comparison With Experimental Data
,”
Minerals Eng.
,
17
, pp.
637
641
.
43.
Harms
,
T. M.
,
Kazmierczak
,
M. J.
, and
Gerner
F. M.
, 1999, “
Developing Convective Heat Transfer in Deep Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
20
, pp.
149
157
.
You do not currently have access to this content.