Thermal instability in a horizontal layer of Rivlin–Ericksen elastico-viscous nanofluid in a porous medium is considered. A linear stability analysis based upon normal mode analysis is used to find a solution of the fluid layer confined between two free boundaries. The onset criterion for stationary and oscillatory convection is derived analytically and graphs have been plotted by giving numerical values to various parameters to depict the stability characteristics. The effects of the concentration Rayleigh number, Vadasz number, capacity ratio, Lewis number, and kinematics viscoelasticity parameter on the stability of the system are investigated. Regimes of oscillatory and nonoscillatory convection for various parameters are derived and discussed in detail. The sufficient conditions for the nonexistence of oscillatory convection have also been obtained.

References

References
1.
Chandrasekhar
,
S.
,
1961
,
Hydrodynamic and Hydro Magnetic Stability
,
Dover
,
New York
.
2.
Nield
,
D. D.
, and
Bejan
,
A.
,
2006
,
Convection in Porous Medium
,
3rd ed.
,
Springer
,
New York
.
3.
Choi
,
S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
,
D. A.
Siginer
and
H. P.
Wang
, eds.,
ASME
,
New York
, pp.
99
105
.
4.
Garg
,
J.
,
Poudel
,
B.
,
Chiesa
,
M.
,
Gordon
,
J. B.
,
Ma
,
J. J.
,
Wang
,
J. B.
,
Ren
,
Z. F.
,
Kang
,
Y. T.
,
Ohtani
,
H.
,
Nanda
,
J.
,
McKinley
,
G. H.
, and
Chen
,
G.
,
2008
, “
Enhanced Thermal Conductivity and Viscosity of Copper Nanoparticles in Ethylene Glycol Nanofluid
,”
J. Appl. Phys.
,
103
, p.
074301
.10.1063/1.2902483
5.
Tzou
,
D. Y.
,
2008
, “
Thermal Instability of Nanofluids in Natural Convection
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2967
2979
.10.1016/j.ijheatmasstransfer.2007.09.014
6.
Tzou
,
D. Y.
,
2008
, “
Instability of Nanofluids in Natural Convection
,”
ASME J. Heat Transfer
,
130
, pp.
372
401
.10.1115/1.2908427
7.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2009
, “
Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid
,”
Int. J. Heat Mass Transfer
,
52
, pp.
5796
5801
.10.1016/j.ijheatmasstransfer.2009.07.023
8.
Kim
,
J.
,
Kang
,
Y. T.
, and
Choi
,
C. K.
,
2011
, “
Analysis of Convective Instability and Heat Transfer Characteristics of Nanofluids
,”
Phys. Fluids
,
16
(
7
), pp.
2395
2401
.10.1063/1.1739247
9.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
, pp.
240
250
.10.1115/1.2150834
10.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2010
, “
The Onset of Convection in a Horizontal Nanofluid Layer of Finite Depth
,”
Eur. J. Mech. B/Fluids
,
29
, pp.
217
233
.10.1016/j.euromechflu.2010.02.003
11.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2010
, “
The Effect of Local Thermal Nonequilibrium on the Onset of Convection in a Nanofluid
,”
ASME J. Heat Transfer
,
132
(
5
), p.
052405
.10.1115/1.4000474
12.
Alloui
,
Z.
,
Vasseur
,
P.
, and
Reggio
,
M.
,
2010
, “
Natural Convection of Nanofluids in a Shallow Cavity Heated From Below
,”
Int. J. Thermal Sci.
,
50
(
3
), pp.
385
393
.10.1016/j.ijthermalsci.2010.04.006
13.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
Thermal Instability in a Porous Medium Layer Saturated by a Nanofluid: Brinkman Model
,”
Transp. Porous Med.
,
81
(
3
), pp.
409
422
.10.1007/s11242-009-9413-2
14.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2010
, “
The Onset of Double-Diffusive Nanofluid Convection in a Layer of a Saturated Porous Medium
,”
Transp. Porous Med.
,
85
(
3
), pp.
941
951
.10.1007/s11242-010-9600-1
15.
Dhananjay
,
G.
,
Agrawal
,
S.
, and
Bhargava
,
R.
,
2010
, “
Rayleigh Benard Convection in Nanofluid
,”
Int. J. Appl. Math. Mech.
,
7
(
2
), pp. 61–76.
16.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
,
2011
, “
The Onset of Double-Diffusive Convection in a Nanofluid Layer
,”
Int. J. Heat Fluid Flow
,
32
(
4
), pp.
771
776
.10.1016/j.ijheatfluidflow.2011.03.010
17.
Chand
,
R.
, and
Rana
,
G. C.
,
2012
, “
Oscillating Convection of Nanofluid in Porous Medium
,”
Transp. Porous Med.
,
95
, pp.
269
284
.10.1007/s11242-012-0042-9
18.
Chand
,
R.
, and
Rana
,
G. C.
,
2012
, “
On the Onset of Thermal Convection in Rotating Nanofluid Layer Saturating a Darcy–Brinkman Porous Medium
,”
Int. J. Heat Mass Transfer
,
55
, pp.
5417
5424
.10.1016/j.ijheatmasstransfer.2012.04.043
19.
Rivlin
,
R. S.
, and
Ericksen
,
J. L.
,
1955
, “
Stress-Deformation Relaxations for Isotropic Materials
,”
J. Rat. Mech. Anal.
,
4
, pp.
323
425
.
20.
Srivastava
,
L. P.
,
1971
, “
Unsteady Flow of Rivlin–Ericksen Fluid With Uniform Distribution of Dust Particles Through Channels of Different Cross Sections in the Presence of Time Dependent Pressure Gradient
,”
Istanbul Teknil Univer. Bul.
194
, p.
19
.
21.
Sharma
,
R. C.
, and
Kumar
,
P.
,
1996
, “
Effect of Rotation on Thermal Instability in Rivlin–Ericksen Elastico-Viscous Fluid
,”
Z. Naturforch.
,
51a
, pp.
821
824
.
22.
Sharma
,
R. C.
, and
Kumar
,
P.
,
1997
, “
Thermal Instability in Rivlin–Ericksen Elastico-Viscous Fluid in Hydromagnetics
,”
Z. Naturforch.
,
52a
, pp.
369
371
.
23.
Prakash
,
K.
, and
Chand
,
R.
,
1999
, “
Effect of Kinematic Visco-Elasticity Instability of a Rivlin–Ericksen Elastico-Viscous Fluid in Porous Medium
,”
Ganita Sandesh
,
14
(
1
), pp.
1
13
.
24.
Sheu
,
L. J.
,
2011
, “
Thermal Instability in a Porous Medium Layer Saturated With a Visco-Elastic Nanofluid
,”
Transp. Porous Med.
,
88
, pp.
461
477
.10.1007/s11242-011-9749-2
25.
Sheu
,
L. J.
,
2011
, “
Linear Stability of Convection in a Visco Elastic Nanofluid Layer
,”
World Acad. Sci. Eng. Technol.
,
58
, pp.
289
295
.
26.
Rana
,
G. C.
, and
Thakur
,
R. C.
,
2012
, “
Effect of Suspended Particles on Thermal Convection in Rivlin–Ericksen Elastico-Viscous Fluid in a Brinkman Porous Medium
,”
J. Mech. Eng. Sci.
,
2
, pp.
162
171
.
27.
Chand
,
R.
, and
Rana
,
G. C.
,
2012
, “
Dufour and Soret Effects on the Thermosolutal Instability of Rivlin–Ericksen Elastico-Viscous Fluid in Porous Medium
,”
Z. Naturforsch.
(in press).10.5560/ZNA.2012-0074
You do not currently have access to this content.