Turbulent flow in d-type corrugated pipes of various aspect ratios has been numerically investigated in terms of flow pattern and friction factor, for Reynolds numbers ranging from 5000 to 100,000. The present numerical model was verified by comparing the friction factor with experimental and numerical results from the literature. The numerical analysis suggested that d-type behavior exists for groove aspect ratios up to w/k = (groove width/rib height) = 2 independent of the pitch. However, for a ratio of w/k = 3 an important change in the flow pattern occurs so that the pressure drag exerted by the groove walls becomes important. It is shown that the friction factor is independent of the groove height as long as the flow is similar to a flow in a d-type corrugated pipe. Moreover, the friction factor curve for d-type pipes shows a logarithmic behavior as function of the Reynolds number, so that a simple method can be used to derive an expression for the friction factor as a function of the Reynolds number and the relative groove width only. The results may be useful to engineering projects that require a better prediction of the friction factor in d-type corrugated pipes.

References

References
1.
Perry
,
A. E.
,
Schofield
,
W. H.
, and
Joubert
,
P. N.
,
1969
, “
Rough Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
,
37
, pp.
383
413
.10.1017/S0022112069000619
2.
Leonardi
,
S.
,
Orlandi
,
P.
, and
Antonia
,
R. A.
,
2007
, “
Properties of d- and k-Type Roughness in a Turbulent Channel Flow
,”
Phys. Fluids
,
19
, p.
125101
.10.1063/1.2821908
3.
Jiménez
,
J.
,
2004
, “
Turbulent Flows Over Rough Walls
,”
Annu. Rev. Fluid Mech.
,
36
, pp.
173
196
.10.1146/annurev.fluid.36.050802.122103
4.
Djenidi
,
L.
,
Anselmet
,
F.
, and
Antonia
,
R. A.
,
1994
, “
LDA Measurements in a Turbulent Boundary Layer Over a d-Type Rough Wall
,”
Exp. Fluids
,
16
, pp.
323
329
.10.1007/BF00195431
5.
Djenidi
,
L.
,
Elavarasan
,
R.
, and
Antonia
,
R. A.
,
1999
, “
The Turbulent Boundary Layer Over Transverse Square Cavities
,”
J. Fluid Mech.
,
395
(
4
), pp.
271
294
.10.1017/S0022112099005911
6.
Sutardi Ching
,
C. Y.
,
2003
, “
The Response of a Turbulent Boundary Layer to Different Shaped Transverse Grooves
,”
Exp. Fluids
,
35
, pp.
325
337
.10.1007/s00348-003-0653-6
7.
Chang
,
K.
,
Constantinescu
,
G.
, and
Park
,
S. O.
,
2006
, “
Analysis of the Flow and Mass Transfer Processes for the Incompressible Flow Past an Open Cavity With a Laminar and a Fully Turbulent Incoming Boundary Layer
,”
J. Fluid Mech.
,
561
(
4
), pp.
113
145
.10.1017/S0022112006000735
8.
Stel
,
H.
,
Morales
,
R. E. M.
,
Franco
,
A. T.
,
Junqueira
,
S. L. M.
,
Erthal
,
R. H.
, and
Gonçalves
,
M. A. L.
,
2010
, “
Numerical and Experimental Analysis of Turbulent Flow in Corrugated Pipes
,”
ASME J. Fluids Eng.
,
132
(
7
), p.
071203
.10.1115/1.4002035
9.
Tani
,
J.
,
1987
, “
Turbulent Boundary Layer Development Over Rough Surfaces
,”
Perspectives in Turbulence Studies
,
H.
Meier
and
P.
Bradshaw
, eds.,
Springer
,
New York
.
10.
Vijiapurapu
,
S.
, and
Cui
,
J.
,
2007
, “
Simulation of Turbulent Flow in a Ribbed Pipe Using Large Eddy Simulation
,”
Numer. Heat Transfer, Part A
,
51
, pp.
1137
1165
.10.1080/10407780601112829
11.
Monson
,
D. J.
,
Seegmiller
,
H. L.
,
McConnaughey
,
P. K.
, and
Chen
,
Y. S.
,
1990
, “
Comparison of Experiment With Calculations Using Curvature-Corrected Zero and Two-Equation Turbulence Models for a Two-Dimensional U-Duct
,” AIAA Paper No. 90-1484.
12.
CHAM
,
2012
,
The PHOENICS Encyclopaedia - PHOENICS On-Line Information System
,
CHAM Ltd.
,
Wimbledon, UK
.
13.
Chen
,
Y. S.
,
Kim
,
S. W.
, and
Ko
,
N. W.
,
1987
, “
Computation of Turbulent Flows Using an Extended k-Epsilon Turbulence Closure Model
,” Report No. NASA-CR-179204.
14.
Lam
,
C. K. G.
, and
Bremhorst
,
K.
,
1981
, “
A Modified Form of the k-ε Model for Predicting Wall Turbulence
,”
ASME J. Fluids Eng.
,
103
(
3
), pp.
456
460
.10.1115/1.3240815
15.
Patankar
,
S. V.
,
Liu
,
C. H.
, and
Sparrow
,
E. M.
,
1977
, “
Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area
,”
ASME J. Heat Transfer
,
99
, pp.
180
186
.10.1115/1.3450666
16.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere, New York
.
17.
Colebrook
,
C. F.
,
1939
, “
Turbulent Flow in Pipes, With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. ICE
,
11
, pp.
133
156
.10.1680/ijoti.1939.13150
You do not currently have access to this content.