The force acting on a spherical particle fixed to a wall and immersed in an axisymmetric straining flow is examined for small Reynolds numbers. The steady, incompressible flow field is computed using an axisymmetric finite-volume method over conditions spanning five decades in the Reynolds number. The flow is characterized by the formation of a vortex ring structure in the wedge region formed between the particle lower surface and the plane wall. A power law expression for the dimensionless particle force is obtained as a function of the Reynolds number, which is found to hold with excellent accuracy for Reynolds numbers below about 0.1.

References

References
1.
Marshall
,
J. S.
, 2007, “
Particle Aggregation and Capture by Walls in a Particulate Aerosol Channel Flow
,”
J. Aerosol Sci.
,
38
, pp.
333
351
.
2.
Marshall
,
J. S.
, 2009, “
Discrete-Element Modeling of Particulate Aerosol Flows
,”
J. Comput. Phys.
,
228
, pp.
1541
1561
.
3.
Goldman
,
A. J.
,
Cox
,
R. G.
, and
Brenner
,
H.
, 1967, “
Slow Viscous Motion of a Sphere Parallel to a Plane Wall—I: Motion Through a Quiescent Fluid
,”
Chem. Eng. Sci.
,
22
(
4
), pp.
637
651
.
4.
Cherukat
,
P.
, and
McLaughlin
,
J. B.
, 1994, “
The Inertial Lift on a Rigid Sphere in a Linear Shear Flow Field Near a Flat Wall
,”
J. Fluid Mech.
,
263
, pp.
1
18
.
5.
Krishnan
,
G. P.
, and
Leighton
,
D. T.
, 1995, “
Measurement of the Inertial Lift on a Moving Sphere on Contact With a Plane Wall in a Shear Flow
,”
Phys. Fluids
,
7
(
11
), pp.
2538
2545
.
6.
King
,
M. R.
, and
Leighton
,
D. T.
, 1997, “
Measurement of the Inertial Lift on a Moving Sphere on Contact With a Plane Wall in a Shear Flow
,”
Phys. Fluids
,
9
(
5
), pp.
1248
1255
.
7.
Sweeney
,
L. G.
, and
Finlay
,
W. H.
, 2007, “
Lift and Drag Forces on a Sphere Attached to a Wall in a Blasius Boundary Layer
,”
J. Aerosol Sci.
,
38
, pp.
131
135
.
8.
Martinez
,
R. C.
,
Sweeney
,
L. G.
, and
Finlay
,
W. H.
, 2009, “
Aerodynamic Forces and Moment on a Sphere or Cylinder Attached to a Wall in a Blasius Boundary Layer
,”
Eng. Appl. Comput. Fluid Mech.
,
3
, pp.
289
295
.
9.
Zeng
,
L.
,
Najjar
,
F.
,
Balachandar
,
S.
, and
Fischer
,
P.
, 2009, “
Forces on a Finite-Sized Particle Located Close to a Wall in a Linear Shear Flow
,”
Phys. Fluids
,
21
, p.
033302
.
10.
Masuda
,
H.
,
Gotoh
,
K.
,
Fukada
,
H.
, and
Banba
,
Y.
, 1994, “
The Removal of Particles From Flat Surfaces Using a High-Speed Air Jet
,”
Adv. Powder Technol.
,
5
, pp.
205
217
.
11.
Zhang
,
X. W.
,
Yao
,
Z. H.
,
Hao
,
P. F.
, and
Xu
,
H. Q.
, 2002, “
Study on Particle Removal Efficiency of an Impinging Jet by an Image-Processing Method
,”
Exp. Fluids
,
32
(
3
), pp.
376
380
.
12.
Otani
,
Y.
,
Namiki
,
N.
, and
Emi
,
H.
, 1995, “
Removal of Fine Particles From Smooth Flat Surfaces by Consecutive Pulse Air Jets
,”
Aerosol Sci. Technol.
,
23
, pp.
665
673
.
13.
Ziskind
,
G.
,
Yarin
,
L. P.
,
Peles
,
S.
, and
Gutfinger
,
C.
, 2002, “
Experimental Investigation of Particle Removal From Surfaces by Pulsed Air Jets
,”
Aerosol Sci. Technol.
,
36
, pp.
652
659
.
14.
Chen
,
D.
, and
Wu
,
J. R.
, 2010, “
Dislodgement and Removal of Dust-Particles From a Surface by a Technique Combining Acoustic Standing Wave and Airflow
,”
J. Acoust. Soc. Am.
,
127
, pp.
45
50
.
15.
Hiemenz
,
K.
, 1911, “
Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder
,”
Dingler’s Polytech. J.
,
326
, p.
321
.
16.
Lai
,
Y. G.
, 2000, “
Unstructured Grid Arbitrarily Shaped Element Method for Fluid Flow Simulation
,”
AIAA J.
,
38
(
12
), pp.
2246
2252
.
17.
Issa
,
R.
, 1985, “
Solution of the Implicit Discretized Fluid Flow Equations by Operator Splitting
,”
J. Comput. Phys.
,
62
, pp.
40
65
.
18.
White
,
F. M.
, 2006,
Viscous Fluid Flow
,
3rd ed
.,
McGraw-Hill
,
New York
, pp.
150
151
.
19.
Moffat
,
H. K.
, 1964,
Viscous and Resistive Eddies Near a Sharp Corner
,”
J. Fluid Mech.
,
18
, pp.
1
18
.
20.
Happel
,
J.
, and
Brenner
,
H.
, 1983,
Low Reynolds Number Hydrodynamics
,
Martinus Nijhoff
,
The Hague
, pp.
122
123
.
21.
Galdi
,
G. P.
, 2009,
An Introduction to the Mathematical Theory of the Navier–Stokes Equation
,
Springer-Verlag
,
New York
, p.
554
.
You do not currently have access to this content.