Microtextured superhydrophobic surfaces have shown potential in friction reduction applications and could be poised to make a significant impact in thermal management applications. The purpose of this paper is to account for the thermal effects of the heated fluid flowing in superhydrophobic microfluidic channels. Through microscopic observation and flow rate measurements it was observed that (1) heating may prolong the Cassie state even under elevated pressure drops by increasing the temperature in the gas layer and that (2) excessive heating may pinch the microchannel flow due to the air layer invading into the liquid layer.
Issue Section:
Technical Briefs
References
1.
Ma
, M.
, and Hill
, R. M.
, 2006, “Superhydrophobic Surfaces
,” Curr. Op. Colloid In.
, 11
(4
), pp. 193
–202
.2.
Choi
, C. H.
, Ulmanella
, U.
, Kim
, J.
, Ho
, C. M.
, and Kim
, C. J.
, 2006, “Effective Slip and Friction Reduction in Nanograted Superhydrophobic Microchannels
,” Phys. Fluid.
, 18
(8
), p. 087105
.3.
Udagawa
, H.
, 1999, “Drag Reduction of Newtonian Fluid in a Circular Pipe With a Highly Water-Repellent Wall
,” J. Fluid Mech
, 381
, pp. 225
–238
.4.
Ou
, J.
, Perot
, B.
, and Rothstein
, J. P.
, 2004, “Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces
,” Phys. Fluid.
, 16
(12
), pp. 4635
–4643
.5.
Furstner
, R.
, Barthlott
, W.
, Neinhuis
, C.
, and Walzel
, P.
, 2005, “Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces
,” Langmuir
, 21
(3
), pp. 956
–961
.6.
Wenzel
, R. N.
, 1936, “Resistance of Solid Surfaces to Wetting by Water
,” Ind. Eng. Chem.
, 28
(8
), pp. 988
–994
.7.
Cassie
, A. B. D.
, and Baxter
, S.
, 1944, “Wettability of Porous Surfaces
,” Trans. Faraday Soc.
, 40
, pp. 546
–551
.8.
Carlborg
, C. F.
, Stemme
, G.
, and van der Wijngaart
, W.
, 2009, “Microchannels With Substantial Friction Reduction at Large Pressure and Large Flow
,” IEEE
22nd International Conference on Micro Electro Mechanical Systems (MEMS 2009), Sorrento, Italy
, pp. 39
–42
.9.
Rothstein
, J. P.
, 2010, “Slip on Superhydrophobic Surfaces
,” Annu. Rev. Fluid Mech.
, 42
, pp. 89
–109
.10.
Truesdell
, R.
, Mammoli
, A.
, Vorobieff
, P.
, van Swol
, F.
, and Brinker
, C. J.
, 2006, “Drag Reduction on a Patterned Superhydrophobic Surface
,” Phys. Rev. Lett.
, 97
(4
), p. 044504
.11.
Cottin-Bizonne
, C.
, Barentin
, C.
, Charlaix
, E.
, Bocquet
, L.
, and Barrat
, J. L.
, 2004, “Dynamics of Simple Liquids at Heterogeneous Surfaces: Molecular-Dynamics Simulations and Hydrodynamic Description
,” Eur. Phys. J. E
, 15
(4
), pp. 427
–438
.12.
Joseph
, P.
, Cottin-Bizonne
, C.
, Benoit
, J. M.
, Ybert
, C.
, Journet
, C.
, Tabeling
, P.
, and Bocquet
, L.
, 2006, “Slippage of Water Past Superhydrophobic Carbon Nanotube Forests in Microchannels
,” Phys. Rev. Lett.
, 97
(15
), p. 156104
.13.
Lee
, C.
, and Kim
, C. J.
, 2009, “Maximizing the Giant Liquid Slip on Superhydrophobic Microstructures by Nanostructuring Their Sidewalls
,” Langmuir
, 25
(21
), pp. 12812
–12818
.14.
Bahadur
, V.
, and Garimella
, S. V.
, 2008, “Electrowetting-Based Control of Droplet Transition and Morphology on Artificially Microstructured Surfaces
,” Langmuir
, 24
(15
), pp. 8338
–8345
.15.
Sun
, T.
, Wang
, G.
, Feng
, L.
, Liu
, B.
, Ma
, Y.
, Jiang
, L.
, and Zhu
, D.
, 2004, “Reversible Switching Between Superhydrophilicity and Superhydrophobicity
,” Ang. Chem. Int. Ed.
, 43
(3
), pp. 357
–360
.16.
Enright
, R.
, Hodes
, M.
, Salamon
, T. R.
, and Muzychka
, Y.
, 2010, “Analysis and Simulation of Heat Transfer in a Superhydrophobic Microchannel
,” 14th ASME International Heat Transfer Conference
, Washington, DC
, Vol. 6
, pp. 157
–168
.17.
Maynes
, D.
, Webb
, B.
, and Soloviev
, V.
, 2011, “Analysis of Laminar Slip-Flow Thermal Transport in Microchannels With Transverse Rib and Cavity Structured Superhydrophobic Walls at Constant Heat Flux
,” 8th ASME
/JSME Thermal Engineering Joint Conference, Honolulu, HI
, p. T10120
18.
Maynes
, D.
, Webb
, B.
, and Davies
, J.
, 2008, “Thermal Transport in a Microchannel Exhibiting Ultrahydrophobic Microribs Maintained at Constant Temperature
,” ASME J. Heat Transfer
, 130(2
), p. 022402
.19.
Lafuma
, A.
, and Qu
, D.
, 2003, “Superhydrophobic States
,” Nat. Mater.
, 2
(7
), pp. 457
–460
.20.
Kim
, T. J.
, and Hidrovo
, C. H.
, 2010, “Stability Analysis of Cassie–Baxter State Under Pressure Driven Flow
,” 8th ASME
International Conference on Nanochannels, Microchannels, and Minichannels, Montreal, QC, Canada, pp. 1657
–1662
.21.
Philip
, J. R.
, 1972, “Flows Satisfying Mixed No-Slip and No-Shear Conditions
,” Zeitschrift für Angewandte Mathematik und Physik
, 23
(3
), pp. 353
–372
.22.
Cottin-Bizonne
, C.
, Barentin
, C.
, and Bocquet
, L.
, 2012, “Scaling Laws for Slippage on Superhydrophobic Fractal Surfaces
,” Phys. Fluid.
, 24
(1
), p. 012001
.23.
Lauga
, E.
, and Stone
, H. A.
, 2003, “Effective Slip in Pressure-Driven Stokes Flow
,” J. Fluid Mech.
, 489
(1
), pp. 55
–77
.24.
Byun
, D.
, Kim
, J.
, Ko
, H. S.
, and Park
, H. C.
, 2008, “Direct Measurement of Slip Flows in Superhydrophobic Microchannels With Transverse Grooves
,” Phys. Fluid.
, 20
(11
), p. 113601
.25.
Gogte
, S.
, Vorobieff
, P.
, Truesdell
, R.
, Mammoli
, A.
, van Swol
, F.
, Shah
, P.
, and Brinker
, C. J.
, 2005, “Effective Slip on Textured Superhydrophobic Surfaces
,” Phys. Fluid.
, 17
(5
), p. 051701
.26.
Ou
, J.
, and Rothstein
, J. P.
, 2005, “Direct Velocity Measurements of the Flow Past Drag-Reducing Ultrahydrophobic Surfaces
,” Phys. Fluid
, 17
(10
), p. 103606
.27.
Kim
, T. J.
, and Hidrovo
, C. H.
, “Pressure and Partial Wetting Effects on Superhydrophobic Friction Reduction in Microchannel Flow
,” Phys. Fluid
(accepted).28.
Williams
, A.
, Vorobieff
, P.
, and Mammoli
, A.
, 2012, “Effect of Slip Flow on Heat Transfer: Numerical Analysis
,” 50th AIAA
Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, pp. 1
–11
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.