Microtextured superhydrophobic surfaces have shown potential in friction reduction applications and could be poised to make a significant impact in thermal management applications. The purpose of this paper is to account for the thermal effects of the heated fluid flowing in superhydrophobic microfluidic channels. Through microscopic observation and flow rate measurements it was observed that (1) heating may prolong the Cassie state even under elevated pressure drops by increasing the temperature in the gas layer and that (2) excessive heating may pinch the microchannel flow due to the air layer invading into the liquid layer.

References

References
1.
Ma
,
M.
, and
Hill
,
R. M.
, 2006, “
Superhydrophobic Surfaces
,”
Curr. Op. Colloid In.
,
11
(
4
), pp.
193
202
.
2.
Choi
,
C. H.
,
Ulmanella
,
U.
,
Kim
,
J.
,
Ho
,
C. M.
, and
Kim
,
C. J.
, 2006, “
Effective Slip and Friction Reduction in Nanograted Superhydrophobic Microchannels
,”
Phys. Fluid.
,
18
(
8
), p.
087105
.
3.
Udagawa
,
H.
, 1999, “
Drag Reduction of Newtonian Fluid in a Circular Pipe With a Highly Water-Repellent Wall
,”
J. Fluid Mech
,
381
, pp.
225
238
.
4.
Ou
,
J.
,
Perot
,
B.
, and
Rothstein
,
J. P.
, 2004, “
Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces
,”
Phys. Fluid.
,
16
(
12
), pp.
4635
4643
.
5.
Furstner
,
R.
,
Barthlott
,
W.
,
Neinhuis
,
C.
, and
Walzel
,
P.
, 2005, “
Wetting and Self-Cleaning Properties of Artificial Superhydrophobic Surfaces
,”
Langmuir
,
21
(
3
), pp.
956
961
.
6.
Wenzel
,
R. N.
, 1936, “
Resistance of Solid Surfaces to Wetting by Water
,”
Ind. Eng. Chem.
,
28
(
8
), pp.
988
994
.
7.
Cassie
,
A. B. D.
, and
Baxter
,
S.
, 1944, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.
8.
Carlborg
,
C. F.
,
Stemme
,
G.
, and
van der Wijngaart
,
W.
, 2009, “
Microchannels With Substantial Friction Reduction at Large Pressure and Large Flow
,”
IEEE
22nd International Conference on Micro Electro Mechanical Systems (MEMS 2009),
Sorrento, Italy
, pp.
39
42
.
9.
Rothstein
,
J. P.
, 2010, “
Slip on Superhydrophobic Surfaces
,”
Annu. Rev. Fluid Mech.
,
42
, pp.
89
109
.
10.
Truesdell
,
R.
,
Mammoli
,
A.
,
Vorobieff
,
P.
,
van Swol
,
F.
, and
Brinker
,
C. J.
, 2006, “
Drag Reduction on a Patterned Superhydrophobic Surface
,”
Phys. Rev. Lett.
,
97
(
4
), p.
044504
.
11.
Cottin-Bizonne
,
C.
,
Barentin
,
C.
,
Charlaix
,
E.
,
Bocquet
,
L.
, and
Barrat
,
J. L.
, 2004, “
Dynamics of Simple Liquids at Heterogeneous Surfaces: Molecular-Dynamics Simulations and Hydrodynamic Description
,”
Eur. Phys. J. E
,
15
(
4
), pp.
427
438
.
12.
Joseph
,
P.
,
Cottin-Bizonne
,
C.
,
Benoit
,
J. M.
,
Ybert
,
C.
,
Journet
,
C.
,
Tabeling
,
P.
, and
Bocquet
,
L.
, 2006, “
Slippage of Water Past Superhydrophobic Carbon Nanotube Forests in Microchannels
,”
Phys. Rev. Lett.
,
97
(
15
), p.
156104
.
13.
Lee
,
C.
, and
Kim
,
C. J.
, 2009, “
Maximizing the Giant Liquid Slip on Superhydrophobic Microstructures by Nanostructuring Their Sidewalls
,”
Langmuir
,
25
(
21
), pp.
12812
12818
.
14.
Bahadur
,
V.
, and
Garimella
,
S. V.
, 2008, “
Electrowetting-Based Control of Droplet Transition and Morphology on Artificially Microstructured Surfaces
,”
Langmuir
,
24
(
15
), pp.
8338
8345
.
15.
Sun
,
T.
,
Wang
,
G.
,
Feng
,
L.
,
Liu
,
B.
,
Ma
,
Y.
,
Jiang
,
L.
, and
Zhu
,
D.
, 2004, “
Reversible Switching Between Superhydrophilicity and Superhydrophobicity
,”
Ang. Chem. Int. Ed.
,
43
(
3
), pp.
357
360
.
16.
Enright
,
R.
,
Hodes
,
M.
,
Salamon
,
T. R.
, and
Muzychka
,
Y.
, 2010, “
Analysis and Simulation of Heat Transfer in a Superhydrophobic Microchannel
,”
14th ASME International Heat Transfer Conference
,
Washington, DC
, Vol.
6
, pp.
157
168
.
17.
Maynes
,
D.
,
Webb
,
B.
, and
Soloviev
,
V.
, 2011, “
Analysis of Laminar Slip-Flow Thermal Transport in Microchannels With Transverse Rib and Cavity Structured Superhydrophobic Walls at Constant Heat Flux
,” 8th
ASME
/JSME Thermal Engineering Joint Conference, Honolulu,
HI
, p.
T10120
18.
Maynes
,
D.
,
Webb
,
B.
, and
Davies
,
J.
, 2008, “
Thermal Transport in a Microchannel Exhibiting Ultrahydrophobic Microribs Maintained at Constant Temperature
,”
ASME J. Heat Transfer
,
130(2
), p.
022402
.
19.
Lafuma
,
A.
, and
Qu
,
D.
, 2003, “
Superhydrophobic States
,”
Nat. Mater.
,
2
(
7
), pp.
457
460
.
20.
Kim
,
T. J.
, and
Hidrovo
,
C. H.
, 2010, “
Stability Analysis of Cassie–Baxter State Under Pressure Driven Flow
,” 8th
ASME
International Conference on Nanochannels, Microchannels, and Minichannels, Montreal, QC, Canada, pp.
1657
1662
.
21.
Philip
,
J. R.
, 1972, “
Flows Satisfying Mixed No-Slip and No-Shear Conditions
,”
Zeitschrift für Angewandte Mathematik und Physik
,
23
(
3
), pp.
353
372
.
22.
Cottin-Bizonne
,
C.
,
Barentin
,
C.
, and
Bocquet
,
L.
, 2012, “
Scaling Laws for Slippage on Superhydrophobic Fractal Surfaces
,”
Phys. Fluid.
,
24
(
1
), p.
012001
.
23.
Lauga
,
E.
, and
Stone
,
H. A.
, 2003, “
Effective Slip in Pressure-Driven Stokes Flow
,”
J. Fluid Mech.
,
489
(
1
), pp.
55
77
.
24.
Byun
,
D.
,
Kim
,
J.
,
Ko
,
H. S.
, and
Park
,
H. C.
, 2008, “
Direct Measurement of Slip Flows in Superhydrophobic Microchannels With Transverse Grooves
,”
Phys. Fluid.
,
20
(
11
), p.
113601
.
25.
Gogte
,
S.
,
Vorobieff
,
P.
,
Truesdell
,
R.
,
Mammoli
,
A.
,
van Swol
,
F.
,
Shah
,
P.
, and
Brinker
,
C. J.
, 2005, “
Effective Slip on Textured Superhydrophobic Surfaces
,”
Phys. Fluid.
,
17
(
5
), p.
051701
.
26.
Ou
,
J.
, and
Rothstein
,
J. P.
, 2005, “
Direct Velocity Measurements of the Flow Past Drag-Reducing Ultrahydrophobic Surfaces
,”
Phys. Fluid
,
17
(
10
), p.
103606
.
27.
Kim
,
T. J.
, and
Hidrovo
,
C. H.
, “
Pressure and Partial Wetting Effects on Superhydrophobic Friction Reduction in Microchannel Flow
,”
Phys. Fluid
(accepted).
28.
Williams
,
A.
,
Vorobieff
,
P.
, and
Mammoli
,
A.
, 2012, “
Effect of Slip Flow on Heat Transfer: Numerical Analysis
,” 50th
AIAA
Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, pp.
1
11
.
You do not currently have access to this content.