A microfluidic system for rapid concentration, enumeration, and size based detection of microparticles is presented. The system includes a micro flow cytometer chip together with fluidics, optics and control on a single platform. The micro flow cytometer chip was designed, fabricated, and integrated with fluidics and optical fibers. The flow microchannel employs chevron structures at the top and bottom surfaces of the channel to achieve two-dimensional flow focusing. The system employs a cross-flow filter for sample concentration thus enabling enumeration and detection of microparticles even at low concentration levels (∼1.1 × 104/ml). A flow stabilizer chip based on the concept of a fluid chamber with a flexible membrane as the top wall was used to reduce flow pulsations within the fluidic system thus improving measurement accuracy. The excitation optical fiber is connected to a laser source and the collection fibers are connected to photomultiplier tubes (PMTs) for signal manipulation and conversion. Labview was used for data acquisition through a PC interface. The ability of the system for enumeration and size-based detection of microparticles was demonstrated using polystyrene microbeads suspended in PBS as the sample.

References

1.
Inatomi
,
K. I.
,
Izuo
,
S. I.
, and
Lee
,
S. S.
, 2006, “
Application of a Microfluidic Device for Counting of Bacteria
,”
Lett. Appl. Microbiol.
,
43
, pp.
296
300
.
2.
Ghubade
,
A.
,
Mandal
,
S.
,
Chaudhury
,
R.
,
Singh
,
R. K.
, and
Bhattacharya
,
S.
, 2009, “
Dielectrophoresis Assisted Concentration of Micro-Particles and Their Rapid Quantitation Based on Optical Means
,”
Biomed. Microdevices
,
11
, pp.
987
995
.
3.
Gonzalez
,
I.
,
Garcia
,
T.
,
Fernandez
,
A.
,
Sanz
,
B.
,
Hernandez
,
P. E.
, and
Martin
,
R.
, 1999, “
Rapid Enumeration of Escherichia coli in Oysters by a Quantitative PCR-ELISA
,”
J. Appl. Microbiol.
,
86
, pp.
231
236
.
4.
Rinta-Kanto
,
J. M.
,
Lehtola
,
M. J.
,
Vartiainen
,
T.
, and
Martikainen
,
P. J.
, 2004, “
Rapid Enumeration of Virus-Like Particles in Drinking Water Samples Using SYBR Green I-Staining
,”
Water Res.
,
38
, pp.
2614
2618
.
5.
Huh
,
D.
,
Gu
,
W.
,
Kamotani
,
Y.
,
Grotberg
,
J. B.
, and
Takayama
,
S.
, 2005, “
Microfluidics for Flow Cytometric Analysis of Cells and Particles
,”
Physiol. Meas.
,
26
, pp.
R73
R98
.
6.
Ziaie
,
B.
,
Baldi
,
A.
,
Lei
,
M.
,
Gu
,
Y.
, and
Siegel
,
R. A.
, 2004, “
Hard and Soft Micromachining for BioMEMS: Review of Techniques and Examples of Applications in Microfluidics and Drug Delivery
,”
Adv. Drug Delivery Rev.
,
56
, pp.
145
172
.
7.
Sato
,
K.
,
Hibara
,
A.
,
Tokeshi
,
M.
,
Hisamoto
,
H.
, and
Kitamori
,
T.
, 2003, “
Microchip-Based Chemical and Biochemical Analysis Systems
,”
Adv. Drug Delivery Rev.
,
55
(3), pp.
379
391
.
8.
Chiem
,
N. H.
, and
Harrison
,
D. J.
, 1998, “
Microchip Systems for Immunoassay: An Integrated Immunoreactor With Electrophoretic Separation for Serum Theophylline Determination
,”
Clin. Chem.
,
44
, pp.
591
598
.
9.
Raiteri
,
R.
,
Grattarola
,
M.
, and
Berger
,
R.
, 2002, “
Micromechanics Senses Biomolecules
,”
Mater. Today
,
5
, pp.
22
29
.
10.
Jain
,
K. K.
, 2000, “
Biotechnological Applications of Lab-Chips and Microarrays
,”
Trends Biotechnol.
,
18
, pp.
278
280
.
11.
Hashemi
,
N.
,
Erickson
,
J. S.
,
Golden
,
J. P.
,
Jackson
,
K. M.
, and
Ligler
,
F. S.
, 2011, “
Microflow Cytometer for Optical Analysis of Phytoplankton
,”
Biosensors Bioelectron.
,
26
, pp.
4263
4269
.
12.
Kennedy
,
M. J.
,
Stelick
,
S. J.
,
Sayam
,
L. G.
,
Yen
,
A.
,
Erickson
,
D.
, and
Batt
,
C. A.
, “
Hydrodynamic Optical Alignment for Microflow Cytometry
,”
Lab Chip
,
11
(6), pp.
1138
1143
.
13.
Hashemi
,
N.
,
Erickson
,
J. S.
,
Golden
,
J. P.
, and
Ligler
,
F. S.
, 2011, “
Optofluidic Characterization of Marine Algae Using a Microflow Cytometer
,”
Biomicrofluidics
,
5
, p.
032009
.
14.
Frankowski
,
M.
,
Bock
,
N.
,
Kummrow
,
A.
,
Schädel-Ebner
,
S.
,
Schmidt
,
M.
,
Tuchscheerer
,
A.
, and
Neukammer
,
J.
, “
A Microflow Cytometer Exploited for the Immunological Differentiation of Leukocytes
,”
Cytometry A
,
79A
(8), pp.
613
624
.
15.
Lee
,
G. B.
,
Lin
,
C. H.
, and
Chang
,
G.
, 2003, “
Micro Flow Cytometers With Buried SU-8/SOG Optical Waveguides
,”
Sens. Actuators, A
,
103
, pp.
165
170
.
16.
Altendorf
,
E.
,
Iverson
,
E.
,
Schutte
,
D.
,
Weigl
,
B.
,
Osborn
,
T.
,
Sabeti
,
R.
, and
Yager
,
P.
, 1996, “
Optical Flow Cytometry Utilizing Microfabricated Silicon Flow Channels
,”
Proc. SPIE
,
2678
, pp.
267
276
.
17.
Chung
,
S.
,
Park
,
S. J.
,
Kim
,
J. K.
,
Chung
,
C.
,
Han
,
D. C.
, and
Chang
,
J. K.
, 2003, “
Plastic Microchip Flow Cytometer Based on 2- and 3-Dimensional Hydrodynamic Flow Focusing
,”
Microsyst. Technol.
,
9
, pp.
525
533
.
18.
Holmes
,
D.
,
She
,
J. K.
,
Roach
,
P. L.
, and
Morgan
,
H.
, 2007, “
Bead-Based Immunoassays Using a Micro-Chip Flow Cytometer
,”
Lab Chip
,
7
, pp.
1048
1056
.
19.
Howell
,
P. B.
,
Golden
,
J. P.
,
Hilliard
,
L. R.
,
Erickson
,
J. S.
,
Mott
,
D. R.
, and
Ligler
,
F. S.
, 2008, “
Two Simple and Rugged Designs for Creating Microfluidic Sheath Flow
,”
Lab Chip
,
8
, pp.
1097
1103
.
20.
Mao
,
X.
,
Lin
,
S. S.
,
Cheng
,
D.
, and
Huang
,
T. J.
, 2009, “
Single-Layer Planar On-Chip Flow Cytometer Using Microfluidic Drifting Based Three-Dimensional (3D) Hydrodynamic Focusing
,”
Lab Chip
,
9
, pp.
1583
1589
.
21.
Golden
,
J. P.
,
Kim
,
J. S.
,
Erickson
,
J. S.
,
Hilliard
,
L. R.
,
Howell
,
P. B.
,
Anderson
,
G. P.
,
Nasir
,
M.
, and
Ligler
,
F. S.
, 2009, “
Multi-Wavelength Microflow Cytometer Using Groove-Generated Sheath Flow
,”
Lab Chip
,
9
, pp.
1942
1950
.
22.
Yang
,
S. Y.
,
Hsiung
,
S. K.
,
Hung
,
Y. C.
,
Chang
,
C. M.
,
Liao
,
T. L.
, and
Lee
,
G. B.
, 2006, “
A Cell Counting/Sorting System Incorporated With a Microfabricated Flow Cytometer Chip
,”
Meas. Sci. Technol.
,
17
, pp.
2001
2009
.
23.
Kim
,
M.
, and
Zydney
,
A. L.
, “
Theoretical Analysis of Particle Trajectories and Sieving in a Two-Dimensional Cross-Flow Filtration System
,”
J. Membrane Sci.
,
281
, pp.
666
675
.
24.
Thangawng
,
A. L.
,
Ruoff
,
R. S.
,
Swartz
,
M. A.
, and
Glucksberg
,
M. R.
, 2007, “
An Ultra-Thin PDMS Membrane as a Bio/Micro-Nano Interface: Fabrication and Characterization
,”
Biomed. Microdevices
,
9
, pp.
587
595
.
You do not currently have access to this content.