This is an analytical study on electrohydrodynamic flows through a circular tube, of which the wall is micropatterned with a periodic array of longitudinal or transverse slip-stick stripes. One unit of the wall pattern comprises two stripes, one slipping and the other nonslipping, and each with a distinct ζ potential. Using the methods of eigenfunction expansion and point collocation, the electric potential and velocity fields are determined by solving the linearized Poisson–Boltzmann equation and the Stokes equation subject to the mixed electrohydrodynamic boundary conditions. The effective equations for the fluid and current fluxes are deduced as functions of the slipping area fraction of the wall, the intrinsic hydrodynamic slip length, the Debye parameter, and the ζ potentials. The theoretical limits for some particular wall patterns, which are available in the literature only for plane channels, are extended in this paper to the case of a circular channel. We confirm that some remarks made earlier for electroosmotic flow over a plane surface are also applicable to the present problem involving patterns on a circular surface. We pay particular attention to the effects of the pattern pitch on the flow in both the longitudinal and transverse configurations. When the wall is uniformly charged, the adverse effect on the electroosmotic flow enhancement due to a small fraction of area being covered by no-slip slots can be amplified if the pitch decreases. Reducing the pitch will also lead to a greater deviation from the Helmholtz–Smoluchowski limit when the slipping regions are uncharged. With oppositely charged slipping regions, local recirculation or a net reversed flow is possible, even when the wall is on the average electropositive or neutral. The flow morphology is found to be subject to the combined influence of the geometry of the tube and the electrohydrodynamic properties of the wall.

References

References
1.
Burgreen
,
D.
, and
Nakache
,
F. R.
, 1964, “
Electrokinetic Flow in Ultrafine Capillary Slits
,”
J. Phys. Chem.
,
68
, pp.
1084
1091
.
2.
Rice
,
C. L.
, and
Whitehead
,
R.
, 1965, “
Electrokinetic Flow in a Narrow Cylindrical Capillary
,”
J. Phys. Chem.
,
69
, pp.
4017
4023
.
3.
Anderson
,
J. L.
, and
Idol
,
W. K.
, 1985, “
Electro-Osmosis Through Pores With Nonuniformly Charged Walls
,”
Chem. Eng. Comm.
,
38
, pp.
93
106
.
4.
Long
,
D.
,
Stone
,
H. A.
, and
Ajdari
,
A.
, 1999, “
Electro-Osmotic Flows Created by Surface Defects in Capillary Electrophoresis
,”
J. Colloid Interface Sci.
,
212
, pp.
338
349
.
5.
Herr
,
A. E.
,
Molho
,
J. I.
,
Santiago
,
J. G.
,
Mungal
,
M. G.
, and
Kenny
,
T. W.
, 2000, “
Electro-Osmotic Capillary Flow With Nonuniform Zeta Potential
,”
Anal. Chem.
,
72
, pp.
1053
1057
.
6.
Stroock
,
A. D.
,
Weck
,
M.
,
Chiu
,
D. T.
,
Huck
,
W. T. S.
,
Kenis
,
P. J. A.
,
Ismagilov
,
R. F.
, and
Whitesides
,
G. M.
, 2000, “
Patterning Electro-Osmotic Flow With Patterned Surface Charge
,”
Phys. Rev. Lett.
,
84
, pp.
3314
3317
.
7.
Ren
,
L.
, and
Li
,
D.
, 2001, “
Electro-Osmotic Flow in Heterogeneous Microchannels
,”
J. Colloid Interface Sci.
,
243
, pp.
255
261
.
8.
Ghosal
,
S.
, 2002, “
Lubrication Theory for Electro-Osmotic Flow in a Microfluidic Channel of Slowly Varying Cross-Section and Wall Charge
,”
J. Fluid Mech.
,
459
, pp.
103
128
.
9.
Watanabe
,
K.
,
Udagawa
,
Y.
, and
Udagawa
,
H.
, 1999, “
Drag Reduction of Newtonian Fluid in a Circular Pipe With a Highly Water–Repellent Wall
,”
J. Fluid Mech.
,
381
, pp.
225
238
.
10.
Cottin-Bizonne
,
C.
,
Barrat
,
J. L.
,
Bocquet
,
L.
, and
Charlaix
,
E.
, 2003, “
Low-Friction Flows of Liquid at Nanopatterned Interfaces
,”
Nat. Mat.
,
2
, pp.
237
240
.
11.
Lauga
,
E.
,
Brenner
,
M. P.
, and
Stone
,
H. A.
, 2007,
Handbook of Experimental Fluid Dynamics
,
Springer
,
New York
.
12.
Rothstein
,
J. P.
, 2010, “
Slip on Superhydrophobic Surfaces
,”
Ann. Rev. Fluid Mech.
,
42
, pp.
89
109
.
13.
Vinogradova
,
O. I.
, and
Belyaev
,
A. V.
, 2011, “
Wetting, Roughness and Flow Boundary Conditions
,”
J. Phys.: Condens. Matter
,
23
, p.
184104
.
14.
Ng
,
C. O.
, and
Wang
,
C. Y.
, 2011, “
Effective Slip for Stokes Flow Over a Surface Patterned With Two- or Three-Dimensional Protrusions
,”
Fluid Dyn. Res.
,
43
, p.
065504
.
15.
Stone
,
H. A.
,
Stroock
,
A. D.
, and
Ajdari
,
A.
, 2004, “
Engineering Flows in Small Devices
,”
Ann. Rev. Fluid Mech.
,
36
, pp.
381
411
.
16.
Bazant
,
M. Z.
, and
Vinogradova
,
O. I.
, 2008, “
Tensorial Hydrodynamic Slip
,”
J. Fluid Mech.
,
613
, pp.
125
134
.
17.
Kamrin
,
K.
,
Bazant
,
M. Z.
, and
Stone
,
H. A.
, 2010, “
Effective Slip Boundary Conditions for Arbitrary Periodic Surfaces: The Surface Mobility Tensor
,”
J. Fluid Mech.
,
658
, pp.
409
437
.
18.
Philip
,
J. R.
, 1972, “
Flows Satisfying Mixed No-Slip and No-Shear Conditions
,”
Z. Angew. Math. Phys.
,
23
, pp.
353
372
.
19.
Philip
,
J. R.
, 1972, “
Integral Properties of Flows Satisfying Mixed No Slip and No Shear Conditions
,”
Z. Angew. Math. Phys.
,
23
, pp.
960
968
.
20.
Lauga
,
E.
, and
Stone
,
H. A.
, 2003, “
Effective Slip in Pressure-Driven Stokes Flow
,”
J. Fluid Mech.
,
489
, pp.
55
77
.
21.
Ng
,
C. O.
, and
Wang
,
C. Y.
, 2010, “
Stokes Flow Through a Periodically Grooved Tube
,”
ASME J. Fluids Eng.
,
132
, p.
101204
.
22.
Muller
,
V. M.
,
Sergeeva
,
I. P.
,
Sobolev
,
V. D.
, and
Churaev
,
N. V.
, 1986, “
Boundary Effects in the Theory of Electrokinetic Phenomena
,”
Colloid J.
,
48
, pp.
606
614
.
23.
Yang
,
J.
, and
Kwok
,
D. Y.
, 2003, “
Analytical Treatment of Flow in Infinitely Extended Circular Microchannels and the Effect of Slippage to Increase Flow Efficiency
,”
J. Micromech. Microeng.
,
13
, pp.
115
123
.
24.
Yang
,
J.
, and
Kwok
,
D. Y.
, 2003, “
Microfluid Flow in Circular Microchannel With Electrokinetic Effect and Navier’s Slip Condition
,”
Langmuir
,
19
, pp.
1047
1053
.
25.
Joly
,
L.
,
Ybert
,
C.
,
Trizac
,
E.
, and
Bocquet
,
L.
, 2004, “
Hydrodynamics Within the Electric Double Layer on Slipping Surfaces
,”
Phys. Rev. Lett.
,
93
, p.
257805
.
26.
Bouzigues
,
C. I.
,
Tabeling
,
P.
, and
Bocquet
,
L.
, 2008, “
Nanofluidics in the Debye Layer at Hydrophilic and Hydrophobic Surfaces
,”
Phys. Rev. Lett.
,
101
, p.
114503
.
27.
Squires
,
T. M.
, 2008, “
Electrokinetic Flows Over Inhomogeneously Slipping Surfaces
,”
Phys. Fluids
,
20
, p.
092105
.
28.
Bahga
,
S. S.
,
Vinogradova
,
O. I.
, and
Bazant
,
M. Z.
, 2010, “
Anisotropic Electro-Osmotic Flow Over Super-Hydrophobic Surfaces
,”
J. Fluid Mech.
,
644
, pp.
245
255
.
29.
Zhao
,
H.
, 2010, “
Electro-Osmotic Flow Over a Charged Superhydrophobic Surface
,”
Phys. Rev. E
,
81
, p.
066314
.
30.
Zhao
,
H.
, 2011, “
Streaming Potential Generated by a Pressure-Driven Flow Over Superhydrophobic Stripes
,”
Phys. Fluids
,
23
, p.
022003
.
31.
Belyaev
,
A. V.
, and
Vinogradova
,
O. I.
, 2011, “
Electro-Osmosis on Anisotropic Super-Hydrophobic Surfaces
,”
Phys. Rev. Lett.
,
107
, p.
098301
.
32.
Ng
,
C. O.
, and
Chu
,
H. C. W.
, 2011, “
Electrokinetic Flows Through a Parallel-Plate Channel With Slipping Stripes on Walls
,”
Phys. Fluids
,
23
, p.
102002
.
33.
Chu
,
H. C. W.
, and
Ng
,
C. O.
, 2012, “
Oscillatory Electro-Osmotic Flow Through a Channel With Slipping Stripes on Walls
,” Proceedings of the 23rd International Congress of Theoretical and Applied Mechanics, Beijing, China, Aug. 19–24, p.
248
.
34.
Masliyah
,
J. H.
, and
Bhattacharjee
,
S.
, 2006,
Electrokinetic and Colloid Transport Phenomena
,
Wiley
,
New Jersey
.
You do not currently have access to this content.