This technical brief presents a numerical study regarding the required development length (L=Lfd/H) to reach fully developed flow conditions at the entrance of a planar channel for Newtonian fluids under the influence of slip boundary conditions. The linear Navier slip law is used with the dimensionless slip coefficient k¯l=kl(μ/H), varying in the range 0<k¯l1. The simulations were carried out for low Reynolds number flows in the range 0<Re100, making use of a rigorous mesh refinement with an accuracy error below 1%. The development length is found to be a nonmonotonic function of the slip velocity coefficient, increasing up to k¯l0.1-0.4 (depending on Re) and decreasing for higher k¯l. We present a new nonlinear relationship between L, Re, and k¯l that can accurately predict the development length for Newtonian fluid flows with slip velocity at the wall for Re of up to 100 and k¯l up to 1.

References

References
1.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
, 2002, “
Apparent Fluid Slip at Hydrophobic Microchannel Walls
,”
Phys. Fluids
,
14
, pp.
L9
L12
.
2.
Watanabe
,
K.
,
Yanuar
, and
Mizunuma
,
H.
, 1998, “
Slip of Newtonian Fluids at Slid Boundary
,”
JSME Int. J., Ser. B
,
41
, pp.
525
529
.
3.
Watanabe
,
K.
,
Udagawa
,
Y.
, and
Udagawa
,
H.
, 1999, “
Drag Reduction of Newtonian Fluid in a Circular Pipe With a Highly Water-Repellant Wall
,”
J. Fluid Mech.
,
381
, pp.
225
238
.
4.
Zhu
,
Y.
, and
Granick
,
S.
, 2001, “
Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces
,”
Phys. Rev. Lett.
,
87
, p.
096105
.
5.
Ligrani
,
P.
,
Blanchard
,
D.
, and
Gale
,
B.
, 2010, “
Slip Due to Surface Roughness for a Newtonian Liquid in a Viscous Microscale Disk Pump
,”
Phys. Fluids
,
22
, p.
052002
.
6.
Barrat
,
J.
, and
Bocquet
,
L.
, 1999, “
Large Slip Effect at a Nonwetting Fluid-Solid Interface
,”
Phys. Rev. Lett.
,
82
, pp.
4671
4674
.
7.
Neto
,
C.
,
Evans
,
D. R.
,
Bonaccurso
,
E.
,
Butt
,
H.-J.
, and
Craig
,
V. S.
, 2005, “
Boundary Slip in Newtonian Liquids: A Review of Experimental Studies
,”
Rep. Prog. Phys.
,
68
, pp.
2859
2897
.
8.
Durst
,
F.
,
Ray
,
S.
,
Unsal
,
B.
, and
Bayoumi
,
O. A.
, 2005, “
The Development Lengths of Laminar Pipe and Channel Flows
,”
ASME J. Fluids Eng.
,
127
, pp.
1154
1160
.
9.
Poole
,
R. J.
, and
Ridley
,
B. S.
, 2007, “
Development-Length Requirements for Fully Developed Laminar Pipe Flow of Inelastic Non-Newtonian Liquids
,”
ASME J. Fluids Eng.
,
129
, pp.
1281
1287
.
10.
Poole
,
R. J.
, and
Chhabra
,
R. P.
, 2010, “
Development Length Requirements for Fully Developed Laminar Pipe Flow of Yield Stress Fluids
,”
ASME J. Fluids Eng.
,
132
, p.
034501
.
11.
Lee
,
S. Y.
,
Jang
,
J.
, and
Wereley
,
S. T.
, 2008, “
Effects of Planar Inlet Plenums on the Hydrodynamically Developing Flows in Rectangular Microchannels of Complementary Aspect Ratios
”,
Microfluidics Nanofluidics
,
5
(
1
), pp.
1
12
.
12.
Lauga
,
E.
,
Brenner
,
M. P.
, and
Stone
,
H. A.
, 2007,
Handbook of Experimental Fluid Dynamics
,
C.
Tropea
,
A.
Yarin
, and
J. F.
Foss
, eds.,
Springer
,
New York
, pp.
1219
1240
, Chap. 19.
13.
Navier
,
C. L. M. H.
, 1827, “
Sur les Lois du Mouvement des Fluids
,”
Mem. Acad. R. Sci. Inst. Fr.
,
6
, pp.
389
440
.
14.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, D.C
.
15.
Oliveira
,
P. J.
,
Pinho
,
F. T.
, and
Pinto
,
G. A.
, 1998, “
Numerical Simulation of Non-Linear Elastic Flows With a General Collocated Finite-Volume Method
,”
J. Non-Newtonian Fluid Mech.
,
79
, pp.
1
43
.
16.
Ferrás
,
L. L.
,
Nóbrega
,
J. M.
, and
Pinho
,
F. T.
, “
Implementation of Slip Boundary Conditions in the Finite Volume Method: New Techniques
,” Int. J. Numer. Methods Eng. (submitted).
17.
Richardson
,
L. F.
, 1911, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. London, Ser. A
,
210
, pp.
307
357
.
18.
Barber
,
R. W.
, and
Emerson
,
D. R.
, 2001, “
A Numerical Investigation of Low Reynolds Number Gaseous Slip Flow at the Entrance of Circular and Parallel Plate Micro-Channels
”, Proc. ECCOMAS Computational Fluid Dynamics Conference 2001.
19.
Darbandi
,
M.
, and
Schneider
,
G. E.
, 1998, “
Numerical Study of the Flow Behavior in the Uniform Velocity Entry Flow Problem
,”
Numer. Heat Transfer, Part A
,
34
(
5
), pp.
479
494
.
You do not currently have access to this content.