Plunging liquid jets are commonly encountered in nature and are widely used in industrial applications (e.g., in waterfalls, waste-water treatment, the oxygenation of chemical liquids, etc.). Despite numerous experimental studies that have been devoted to this interesting problem, there have been very few two-phase flow simulations. The main difficulty is the lack of a quantitative subgrid model for the air entrainment process, which plays a critical role in this problem. In this paper, we present in detail a computational multiphase fluid dynamics (CMFD)-based approach for analyzing this problem. The main ingredients of this approach are a comprehensive subgrid air entrainment model that predicts both the rate and location of the air entrainment and a two-fluid transport model, in which bubbles of different sizes are modeled as a continuum fluid. Using this approach, a Reynolds-averaged Navier Stokes (RaNS) two-way coupled two-phase flow simulation of a plunging liquid jet with a diameter of 24 mm and a liquid jet velocity around 3.5 m/s was performed. We have analyzed the simulated void fraction and bubble count rate profiles at three different depths beneath the average free surface and compared them with experimental data in literature. We observed good agreement with data at all locations. In addition, some interesting phenomena on the different movements of bubbles with different sizes were observed and discussed.

References

References
1.
Volkart
,
P.
, 1980, “
The Mechanism of Air Bubble Entrainment in Self-Aerated Flow
,”
Int. J. Multiphase Flow
,
6
(
5
), pp.
411
423
.
2.
Sene
,
K. J.
, 1988, “
Air Entrainment by Plunging Jets
,”
Chem. Eng. Sci.
,
43
(
10
), pp.
2615
2623
.
3.
Brattberg
,
T.
, and
Chanson
,
H.
, 1998, “
Air Entrapment and Air Bubble Dispersion at Two-Dimensional Plunging Water Jets
,”
Chem. Eng. Sci.
,
53
(
24
), pp.
4113
4127
.
4.
Rajaratnam
,
N.
, 1962, “
An Experimental Study of Air Entrainment Characteristics of the Hydraulic Jump
,”
J. Inst. Eng. (India), Part AG
,
42
(
7
), pp.
247
273
.
5.
Ervine
,
D.
,
McKeogh
,
E.
, and
Elsawy
,
E.
, 1980, “
Effect of Turbulence Intensity on the Rate of Air Entrainment by Plunging Water Jets
,”
Institution of Civil Engineers (Part 2)
, Vol.
69
,
ICE Publishing
,
London
, pp.
425
445
.
6.
Van de Donk
,
J. A. C.
, 1981, “
Water Aeration With Plunging Jets
,” Ph.D. thesis, Technische Hogeschool Delft, The Netherlands.
7.
McKeogh
,
E. J.
, and
Ervine
,
D. A.
, 1981, “
Air Entrainment Rate and Diffusion Pattern of Plunging Liquid Jets
,”
Chem. Eng. Sci.
,
36
(
7
), pp.
1161
1172
.
8.
Ohkawa
,
A.
,
Kusabiraki
,
D.
,
Kawai
,
Y.
, and
Sakai
,
N.
, 1987, “
Flow Characteristics of an Air-Entrainment Type Aerator Having a Long Downcomer
,”
Chem. Eng. Sci.
,
42
(
11
), pp.
2788
2790
.
9.
Yamagiwa
,
K.
,
Kusabiraki
,
D.
, and
Ohkawa
,
A.
, 1990, “
Gas Holdup and Gas Entrainment Rate in Downflow Bubble Column With Gas Entrainment by a Liquid Jet Operating at High Liquid Throughput
,”
J. Chem. Eng. Jpn.
,
23
(
3
), pp.
343
348
.
10.
Cummings
,
P. D.
, 1996, “
Aeration Due to Breaking Waves
,” Ph.D. thesis, University of Queensland, Queensland, Australia.
11.
Waniewski
,
T. A.
,
Brennen
,
C. E.
, and
Raichlen
,
F.
, 2001, “
Measurement of Air Entrainment by Bow Waves
,”
ASME J. Fluids Eng.
,
123
, pp.
57
63
.
12.
Chanson
,
H.
, and
Manasseh
,
R.
, 2003, “
Air Entrainment Processes in a Circular Plunging Jet: Void-Fraction and Acoustic Measurements
,”
ASME J. Fluids Eng.
,
125
, pp.
910
921
.
13.
Cummings
,
P.
, and
Chanson
,
H.
, 1997, “
Air Entrainment in the Developing Flow Region of Plunging Jets—Part 1: Theoretical Development
,”
ASME J. Fluids Eng.
119
(
3
), pp.
597
602
.
14.
Cummings
,
P.
, and
Chanson
,
H.
, 1997, “
Air Entrainment in the Developing Flow Region of Plunging Jets—Part 2: Experimental
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
603
608
.
15.
Gomez-Ledesma
,
R.
,
Kiger
,
K.
, and
Duncan
,
J.
, 2011, “
The Impact of a Translating Plunging Jet on a Pool of the Same Liquid
,”
J. Fluid Mech.
,
680
, pp.
5
30
.
16.
Chirichella
,
D.
,
Gomez Ledesma
,
R.
,
Kiger
,
K.
, and
Duncan
,
J.
, 2002, “
Incipient Air Entrainment in a Translating Axisymmetric Plunging Laminar Jet
,”
Phys. Fluids
,
14
, pp.
781
790
.
17.
Zhu
,
Y.
,
Oguz
,
H.
, and
Prosperetti
,
A.
, 2000, “
On the Mechanism of Air Entrainment by Liquid Jets at a Free Surface
,”
J. Fluid Mech.
,
404
, pp.
151
177
.
18.
Ohl
,
C.
,
Oguz
,
H.
, and
Prosperetti
,
A.
, 2000, “
Mechanism of Air Entrainment by a Disturbed Liquid Jet
,”
Phys. Fluids
,
12
, pp.
1710
1714
.
19.
Lopez
,
J. M.
,
Danciu
,
D. V.
,
Da Silva
,
M. J.
,
Hampel
,
U.
, and
Mohan
,
R.
, 2010, “
Experiments on Air Entrainment Due to Free Falling- and Wall-Jets
,” ASME 3rd Joint US-European Fluids Engineering Summer Meeting (FEDSM2010), Montreal, QC, Canada, Aug. 1–5, pp.
283
291
,
ASME
Paper No. FEDSM-ICNMM2010-30789.
20.
Qu
,
X.
,
Goharzadeh
,
A.
,
Khezzar
,
L.
, and
Molki
,
A.
, 2010, “
Experimental Characterization of Air-Entrainment in a Plunging Water Jet System Using Particle Image Velocimetry (PIV)
,” ASME 3rd Joint US-European Fluids Engineering Summer Meeting (FEDSM2010), Montreal, QC, Canada, Aug. 1–5, pp.
2767
2772
,
ASME
Paper No. FEDSM-ICNMM2010-30225.
21.
Bin
,
A.
, 1993, “
Gas Entrainment by Plunging Liquid Jets
,”
Chem. Eng. Sci.
,
48
(
21
), pp.
3585
3630
.
22.
Chanson
,
H.
, 1997,
Air Bubble Entrainment in Free-Surface Turbulent Shear Flows
,
Academic Press
,
London
.
23.
Kiger
,
K.
, and
Duncan
,
J.
, 2012, “
Air-Entrainment Mechanisms in Plunging Jets and Breaking Waves
,”
Annu. Rev. Fluid Mech.
,
44
(
1
), pp.
563
596
.
24.
Ma
,
J.
,
Oberai
,
A. A.
,
Drew
,
D. A.
,
Lahey
,
R. T.
, Jr.
, and
Moraga
,
F. J.
, 2010, “
A Quantitative Sub-Grid Air Entrainment Model for Bubbly Flows-Plunging Jets
,”
Comput. Fluids
,
39
(
1
), pp.
77
86
.
25.
Schmidtke
,
M.
, and
Lucas
,
D.
, 2009, “
CFD Approaches for Modelling Bubble Entrainment by an Impinging Jet
,”
Sci. Technol. Nucl. Installations
,
2009
, p.
148436
.
26.
Qu
,
X.
,
Khezzar
,
L.
,
Danciu
,
D.
,
Labois
,
M.
, and
Lakehal
,
D.
, 2011, “
Characterization of Plunging Liquid Jets: A Combined Experimental and Numerical Investigation
,”
Int. J. Multiphase Flow
,
37
(
7
), pp.
722
731
.
27.
Deshpande
,
S.
,
Trujillo
,
M.
,
Wu
,
X.
, and
Chahine
,
G.
, 2012, “
Computational and Experimental Characterization of a Liquid Jet Plunging Into a Quiescent Pool at Shallow Inclination
,”
Int. J. Heat Fluid Flow
,
34
, pp.
1
14
.
28.
Zidouni Kendil
,
F.
,
Danciu
,
D.
,
Schmidtke
,
M.
,
Bousbia Salah
,
A.
,
Lucas
,
D.
,
Krepper
,
E.
, and
Mataoui
,
A.
, 2012, “
Flow Field Assessment Under a Plunging Liquid Jet
,”
Prog. Nucl. Energy
,
56
, pp.
100
110
.
29.
Iafrati
,
A.
,
Campana
,
E. F.
,
Gomez Ledesma
,
R.
,
Kiger
,
K. T.
, and
Duncan
,
J. H.
, 2004, “
Air Entrainment Induced by the Impact of a Planar Translating Jet on a Flat Free Surface
,”
Proc. 25th Symposium on Naval Hydrodynamics
, Office of Naval Research, Washington, D.C., p.
84
.
30.
Galimov
,
A.
, 2007, “
An Analysis of Interfacial Waves and Air Ingestion Mechanisms
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
31.
Galimov
,
A. Y.
,
Sahni
,
O.
,
Lahey
,
R. T.
, Jr.
,
Shephard
,
M. S.
,
Drew
,
D. A.
, and
Jansen
,
K. E.
, 2010, “
Parallel Adaptive Simulation of a Plunging Liquid Jet
,”
Acta Math. Sci.
,
30
(
2
), pp.
522
538
.
32.
Drew
,
D.
, and
Passman
,
S.
, 1998,
Theory of Multicomponent Fluids
(Applied Mathematical Sciences), Vol.
135
,
Springer-Verlag
,
Berlin
.
33.
Lahey
,
R. T.
, Jr.
, 2009, “
On the Computation of Multiphase Flow
,”
J. Nucl. Technol.
,
167
(
1
), pp.
29
45
. Available at http://www.new.ans.org/pubs/journals/nt/a_8849
34.
Souders
,
D. T.
, and
Hirt
,
C. W.
, 2004, “
Modeling Entrainment of Air at Turbulent Free Surfaces
,” Proceedings of World Water and Environmental Resources Congress 2004, Salt Lake City, UT, June 27–July 1,
ASCE
, pp.
1
10
.
35.
Shi
,
F.
,
Kirby
,
J.
, and
Ma
,
G.
, 2010, “
Modeling Quiescent Phase Transport of Air Bubbles Induced by Breaking Waves
,”
Ocean Model.
,
35
(
1-2
), pp.
105
117
.
36.
Ma
,
J.
,
Oberai
,
A.
,
Drew
,
D.
,
Lahey
,
R.
, Jr.
, and
Hyman
,
M.
, 2011, “
A Comprehensive Sub-Grid Air Entrainment Model for RaNS Modeling of Free-Surface Bubbly Flows
,”
J. Comput. Multiphase Flows
,
3
, pp.
41
56
.
37.
Ma
,
G.
,
Shi
,
F.
, and
Kirby
,
J.
, 2011, “
A Polydisperse Two-Fluid Model for Surf Zone Bubble Simulation
,”
J. Geophys. Res.
,
116
(
C5
), p.
C05010
.
38.
Moraga
,
F. J.
,
Carrica
,
P. M.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
, 2008, “
A Sub-Grid Air Entrainment Model for Breaking Bow Waves and Naval Surface Ships
,”
Comput. Fluids
,
37
(
3
), pp.
281
298
.
39.
Ma
,
J.
,
Oberai
,
A.
,
Drew
,
D.
,
Lahey
,
R.
, Jr.
, and
Hyman
,
M.
, 2009, “
A Comprehensive Subgrid Air Entrainment Model for Reynolds-Averaged Simulations of Free-Surface Bubbly Flows
,” 2009 APS DFD Meeting Abstracts.
40.
Chanson
,
H.
,
Aoki
,
S.
, and
Hoque
,
A.
, 2002, “
Similitude of Air Bubble Entrainment and Dispersion in Vertical Circular Plunging Jet Flows: An Experimental Study With Freshwater, Salty Freshwater and Seawater
,” Dept. of Architecture and Civil Eng., Toyohashi University of Technology, Japan, Coastal/Ocean Engineering Report No. COE02-1.
41.
Chanson
,
H.
,
Aoki
,
S.
, and
Hoque
,
A.
, 2004, “
Physical Modelling and Similitude of Air Bubble Entrainment at Vertical Circular Plunging Jets
,”
Chem. Eng. Sci.
,
59
(
4
), pp.
747
758
.
42.
Martinez-Bazan
,
C.
,
Montañes
,
J.
, and
Lasheras
,
J. C.
, 1999, “
On the Breakup of an Air Bubble Injected Into a Fully Developed Turbulent Flow. Part 1. Breakup Frequency
,”
J. Fluid Mech.
,
401
, pp.
157
182
.
43.
Larreteguy
,
A. E.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
, 2002, “
A Particle-Center-Averaged Two-Fluid Model for Wall-Bounded Bubbly Flows
,” ASME Joint US-European Fluids Engineering Summer Meeting (FEDSM2002), Montreal, QC, Canada, July 14–18, pp.
303
318
,
ASME
Paper No. FEDSM2002-31212.
44.
Hunt
,
J.
, 1984, “
Turbulence Structure and Turbulent Diffusion Near Gas-Liquid Interfaces
,”
Gas Transfer at Water Surfaces
,
W.
Brutsaert
and
G.
Jirka
, eds.,
Reidel
,
Dordrecht, The Netherlands
, pp.
67
82
.
45.
Moraga
,
F. J.
,
Larreteguy
,
A. E.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
, 2006, “
A Center-Averaged Two-Fluid Model for Wall-Bounded Bubbly Flows
,”
Comput. Fluids
,
35
, pp.
429
461
.
46.
Zhang
,
D.
, and
Prosperetti
,
A.
, 1994, “
Averaged Equations for Inviscid Disperse Two-Phase Flow
,”
J. Fluid Mech.
,
267
, pp.
185
291
.
47.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
48.
Paterson
,
E. G.
,
Wilson
,
R. V.
, and
Stern
,
F.
, 2003, “
General-Purpose Parallel Unsteady RaNS Ship Hydrodynamics Code: CFDSHIP-IOWA
,” Iowa Institute for Hydraulic Research, University of Iowa, IA, IIHR Report No. 432.
49.
Troshko
,
A. A.
, and
Hassan
,
Y. A.
, 2001, “
A Two-Equation Turbulence Model of Turbulent Bubbly Flows
,”
Int. J. Multiphase Flow
,
27
(
11
), pp.
1965
2000
.
50.
Lahey
,
R. T.
, Jr.
, 2005, “
The Simulation of Multidimensional Multiphase Flows
,”
Nucl. Eng. Des.
,
235
, pp.
1043
1060
.
51.
Arnold
,
G.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
, 1989, “
Derivation of Constitutive Equations for Interfacial Force and Reynolds Stress for a Suspension of Spheres Using Ensemble Averaging
,”
Chem. Eng. Commun.
,
86
, pp.
43
54
.
52.
Lopez de Bertodano
,
M.
, 1992, “
Turbulent Bubbly Two-Phase Flow in a Triangular Duct
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY.
53.
Sato
,
Y.
,
Sadatomi
,
M.
, and
Sekoguchi
,
K.
, 1981, “
Momentum and Heat Transfer in Two-Phase Bubble Flow—I. Theory
,”
Int. J. Multiphase Flow
,
7
, pp.
167
177
.
54.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
, 1994, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.
55.
Carrica
,
P. M.
,
Wilson
,
R. V.
, and
Stern
,
F.
, 2006, “
An Unsteady Single-Phase Level Set Method for Viscous Free Surface Flows
,”
Int. J. Numer. Methods Fluids
,
53
, pp.
229
256
.
56.
Carrica
,
P. M.
,
Wilson
,
R. V.
, and
Stern
,
F.
, 2006, “
Unsteady RaNS Simulation of the Ship Forward Speed Diffraction Problem
,”
Comput. Fluids
,
35
, pp.
545
570
.
57.
Tomiyama
,
A.
, 1998, “
Struggles With Computational Bubble Dynamics
,” Proc. 3rd Int. Conf. on Multiphase Flows (ICMF98).
58.
Ishii
,
M.
, 1987, “
Two-Fluid Model for Two-Phase Flow
” 2nd Int. Workshop on Two-Phase Flow Fundamentals.
59.
Legendre
,
D.
, and
Magnaudet
,
J.
, 1998, “
The Lift Force on a Spherical Bubble in Viscous Linear Shear Flow
,”
J. Fluid Mech.
,
368
, pp.
81
126
.
60.
Hosokawa
,
S.
, and
Tomiyama
,
A.
, 2009, “
Multi-Fluid Simulation of Turbulent Bubbly Pipe Flows
,”
Chem. Eng. Sci.
,
64
(
24
), pp.
5308
5318
.
61.
Auton
,
T. R.
, 1987, “
The Lift Force on a Spherical Body in a Rotational Flow
,”
J. Fluid Mech.
,
183
, pp.
199
218
.
62.
Carrica
,
P. M.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
, 1999, “
A Polydisperse Model for Bubbly Two-Phase Flow Around a Surface Ship
,”
Int. J. Multiphase Flow
,
25
, pp.
257
305
.
63.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
64.
Moraga
,
F. J.
,
Larreteguy
,
A. E.
,
Carrica
,
P. M.
,
Drew
,
D. A.
, and
Lahey
,
R. T.
, Jr.
, 2001,
CFDShipM: Multiphase Code for Ship Hydrodynamics. Version 3.02.02 Users Manual
,
Rensselaer Polytechnic Institute
,
Troy, NY
.
65.
Roe
,
P.
, 1985, “
Some Contributions to the Modeling of Discontinuous Flows
,”
Large-Scale Computations in Fluid Mechanics
,
AMS
,
Providence, RI
.
66.
Sweby
,
P. K.
, 1985, “
High Resolution TVD Schemes Using Flux Limiters
,”
Large-Scale Computations in Fluid Mechanics
,
AMS
,
Providence, RI
.
67.
Tamamidis
,
P.
, and
Assanis
,
D. N.
, 1993, “
Evaluation of Various High-Order Accuracy Schemes With and Without Flux Limiters
,”
Int. J. Numer. Methods Fluids
,
16
, pp.
931
948
.
68.
Saxena
,
S. K.
, and
Ravi
,
K.
, 1995, “
Computation of Three Dimensional Supersonic and Hypersonic Blunt Body Flows Using High Resolution TVD Schemes Based on Roe’s Approximate Riemann Solver
,”
Lect. Notes Phys.
,
453
, pp.
520
524
.
69.
Chanson
,
H.
, 1997, “
Air Entrainment by Plunging Jets
,”
Air Bubble Entrainment in Free-Surface Turbulent Shear Flows
,
Academic Press
,
London
, pp.
53
72
.
You do not currently have access to this content.