Despite the tremendous progress over the past three decades in the area of turbomachinery computational fluid dynamics, there are still substantial differences between the experimental and the numerical results pertaining to the individual flow quantities. These differences are integrally noticeable in terms of major discrepancies in aerodynamic losses, efficiency, and performance of the turbomachines. As a consequence, engine manufacturers are compelled to frequently calibrate their simulation package by performing a series of experiments before issuing efficiency and performance guaranty. This paper aims at identifying the quantities, whose simulation inaccuracies are preeminently responsible for the aforementioned differences. This task requires (a) a meticulous experimental investigation of all individual thermofluid quantities and their interactions, resulting in an integral behavior of the turbomachine in terms of efficiency and performance; (b) a detailed numerical investigation using appropriate grid densities based on simulation sensitivity; and (c) steady and transient simulations to ensure their impact on the final numerical results. To perform the above experimental and numerical tasks, a two-stage, high-pressure axial turbine rotor has been designed and inserted into the TPFL turbine research facility for generating benchmark data to compare with the numerical results. Detailed interstage radial and circumferential traversing presents a complete flow picture of the second stage. Performance measurements were carried out for design and off-design rotational speed. For comparison with numerical simulations, the turbine was numerically modeled using a commercial code. An extensive mesh sensitivity study was performed to achieve a grid-independent accuracy for both steady and transient analysis.

References

References
1.
Hah
,
C.
,
Bergner
,
J.
, and
Schiffer
,
H. P.
, 2008, “
Tip Clearance Vortex Oscillation, Vortex Shedding and Rotating Instabilities in an Axial Transonic Compressor Rotor
,” ASME Paper No. GT2008-50105.
2.
Hah
,
C.
,
Rabe
,
D. C.
, and
Wadia
,
A. R.
, 2004, “
Role of Tip-Leakage Vortices and Passage Shock in Stall Inception in a Swept Transonic Compressor Rotor
,” Proceedings of
ASME
Turbo Expo 2004, Vienna, Austria, 14–17 June, Paper No. GT2004-53867.
3.
Hah
,
C.
,
Rabe
,
D. C.
, and
Wadia
,
A. R.
, 2005, “
Effects of Aerodynamic Sweep on the Development of Tip-Leakage Vortex and Stall Inception in a Transonic Compressor Rotor
,” Proceedings of the 15th International Symposium on Air Breathing Engines, Munich, Germany, Paper No. ISABE-2005-1142.
4.
Adamczyk
,
J. J.
, 1985, “
Model Equation for Simulating Flows in Multistage Turbomachinery
,” ASME Paper No. 85-GT-226.
5.
Chou
,
P. Y.
, 1945, “
On the Velocity Correlations and the Solution of the Equation of Turbulent Fluctuations
,”
Q. Appl. Math.
,
3
, pp.
38
54
.
6.
Jones
,
W. P.
, and
Launder
,
B. E.
, 1972, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
, pp.
301
314
.
7.
Wilcox
,
D.
, 1993,
Turbulence Modeling for CFD
,
DCW Industries
,
La Cañada, CA
.
8.
Menter
,
F. R.
, 1993, “
Zonal Two-Equation k-ω Turbulence Models for Aerodynamic Flows
,” AIAA Paper No. 93-2906.
9.
Langrty
,
R. B.
, and
Menter
,
F. R.
, 2005, “
Transition Modeling for General CFD Applications in Aeronautics
,” AIAA Paper No. AIAA-2005-522.
10.
Menter
,
F.
, 2008, Private Communication.
11.
Traupel
,
W.
, 1977,
Thermische Turbomaschinen
,
Springer-Verlag
,
Berlin
.
12.
Schobeiri
,
M.
, 2005,
Turbomachinery Flow Physics and Dynamic Performance
,
Springer-Verlag
,
Heidelberg
.
13.
Schobeiri
,
M. T.
, 2010,
Turbomachinery Flow Physics and Dynamic Performance
,
2nd
ed.,
Springer-Verlag
,
Heidelberg
.
14.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
, pp.
621
656
.
15.
Sieverding
,
C. H.
, 1985, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
248
257
.
16.
Langston
,
L. S.
, 2001, “
Secondary Flows in Axial Turbines-A Review
,”
Ann. N. Y. Acad. Sci.
,
934
, pp.
11
26
.
17.
Schobeiri
,
M. T.
,
Gilarranz
,
J.
, and
Johansen
,
E.
, 1999, “Final Report on: Efficiency, Performance, and Interstage Flow Field Measurement of Siemens-Westinghouse HP-Turbine Blade Series 9600 and 5600,” Westinghouse Electric, TPFL-Texas A&M Report No. 1.
18.
Schobeiri
,
M. T.
,
Gillaranz
,
J. L.
, and
Johansen
,
E. S.
, 2000, “
Aerodynamic and Performance Studies of a Three Stage High Pressure Research Turbine With 3-D Blades, Design Point and Off-Design Experimental Investigations
,” Proceedings of ASME Turbo Expo 2000, Paper No. 2000-GT-484.
19.
Treiber
,
M.
,
Abhari
,
R. S.
, and
Sell
,
M.
, 2002, “
Flow Physics and Vortex Evolution in Annular Turbine Cascades
,” Proceedings of
ASME
Turbo Expo 2002, Amsterdam, The Netherlands, 3–6 June, Paper No. GT2002-30540.
20.
Brennan
,
G.
,
Harvey
,
N. W.
,
Rose
,
M. G.
,
Fomison
,
N.
, and
Taylor
,
M. D.
, 2001, “
Improving the Efficiency of the Trent 500 HP Turbine Using Non-axisymmetric End Walls—Part 1: Turbine Design
,” Proceedings of ASME Turbo Expo 2001, Paper No. 2001-GT-0444.
21.
Harvey
,
N. W.
,
Rose
,
M. G.
,
Brennan
,
G.
, and
Newman
,
D. A.
, 2002, “
Improving Turbine Efficiency Using Non-Axisymmetric End Walls: Validation in the Multi-Row Environment and With Low Aspect Ratio Blading
,” Proceedings of
ASME
Turbo Expo 2002, Paper No. GT2002-30337.
22.
Germain
,
T.
,
Nagel
,
M.
,
Raab
,
I.
,
Schuepbach
,
P.
,
Abhari
,
R. S.
, and
Rose
,
M.
, 2008, “
Improving Efficiency of a High Work Turbine Using Non-Axisymmetric End Walls—Part I: Endwall Design and Performance
,” Proceedings of
ASME
Turbo Expo 2008, Paper No. GT2008-50469.
23.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
, 2009, “
The Application of Non-Axisymmetric Endwall Contouring in a Single Stage, Rotating Turbine
,” Proceedings of
ASME
Turbo Expo 2009, Paper No. GT2009-59169.
24.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
, 2010, “
The Performance of a Generic Non-Axisymmetric End Wall in a Single Stage, Rotating Turbine at On and Off-Design Conditions
,” Proceedings of
ASME
Turbo Expo 2010, Paper No. GT2010-22006.
25.
Chibli
,
H.
,
Abedlfattah
,
S. A.
,
Schobeiri
,
M. T.
, and
Kang
,
C.
, 2009, “
An Experimental and Numerical Study of the Effects of Flow Incidence Angles on the Performance of a Stator Blade Cascade of a High Pressure Steam Turbine
,” ASME Turbo Expo 2009, Orlando, FL, 8–12 June, Paper No. GT2009-59131.
26.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
27.
ANSYS Inc., 2009, ANSYS-CFX Release Documentation, 12.0 ed.
28.
Denton
,
J. D.
, 1992, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
, pp.
18
26
.
29.
Schobeiri
,
M. T.
, and
Pappu
,
K.
, 1999, “
Optimization of Trailing Edge Ejection Mixing Losses: A Theoretical and Experimental Study
,”
ASME J. Fluids Eng.
,
121
, pp.
118
125
.
30.
Schobeiri
,
M. T.
, and
Chakka
,
P.
, 2002, “
Prediction of Turbine Blade Heat Transfer and Aerodynamics Using Unsteady Boundary Layer Transition Model
,”
Int. J. Heat Mass Transfer
,
45
, pp.
815
829
.
31.
Schobeiri
,
M. T.
, and
Radke
,
R. E.
, 1994, “
Effects of Periodic Unsteady Wake Flow and Pressure Gradient on Boundary Layer Transition Along the Concave Surface of a Curved Plate
,” International Gas Turbine and Aero-Engine Congress and Exposition, Hague, The Netherlands, 13–16 June, Paper No. 94-GT-327.
32.
Schobeiri
,
M. T.
,
Read
,
K.
, and
Lewalle
,
J.
, 2003, “
Effect of Unsteady Wake Passing Frequency on Boundary Layer Transition, Experimental Investigation and Wavelet Analysis
,”
ASME J. Fluids Eng.
,
125
, pp.
251
266
.
33.
Wright
,
L.
, and
Schobeiri
,
M. T.
, 1999, “
The Effect of Periodic Unsteady Flow on Aerodynamics and Heat Transfer on a Curved Surface
,”
ASME J. Heat Transfer
,
121
, pp.
22
33
.
34.
Schobeiri
,
M. T.
,
Öztürk
,
B.
, and
Ashpis
,
D. E.
, 2005, “
On the Physics of Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions
,”
ASME J. Fluid Eng.
,
127
, pp.
503
513
.
35.
Schobeiri
,
M. T.
, and
Öztürk
,
B.
, 2004, “
Experimental Study of the Effect of Periodic Unsteady Wake Flow on Boundary Layer Development, Separation, and Reattachment Along the Surface of a Low Pressure Turbine Blade
,”
ASME J. Turbomach.
,
126
(
4
), pp.
663
676
.
36.
Schobeiri
,
M. T.
,
Öztürk
,
B.
, and
Ashpis
,
D. E.
, 2005, “
Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Re-Attachment Along the Suction Surface of a Low Pressure Turbine Blade
,” ASME Paper No. GT2005-68600.
37.
Schobeiri
,
M. T.
,
Öztürk
,
B.
, and
Ashpis
,
D. E.
, 2005, “
Intermittent Behavior of the Separated Boundary Layer Along the Suction Surface of a Low Pressure Turbine Blade Under Periodic Unsteady Flow Conditions
,” ASME Paper No. GT2005-68603.
38.
Öztürk
,
B.
, and
Schobeiri
,
M. T.
, 2006, “
Effect of Turbulence Intensity and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Re-Attachment Over the Separation Bubble Along the Suction Surface of a Low Pressure Turbine Blade
,” ASME Paper No. GT2006-91293.
39.
Menter
,
F.
, 1993, “
Zonal Two Equation k- Turbulence Models for Aerodynamic Flows
,” AIAA Paper No. 93-2906.
40.
Menter
,
F.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
, pp.
1598
1605
.
41.
Schobeiri
,
M. T.
, 2011,
Fluid Mechanics for Engineers, A Graduate Text Book
,
Springer-Verlag
,
Berlin
.
42.
Menter
,
F.
, 2008, Private Communication.
43.
Langtry
,
R. B.
, and
Menter
,
F. R.
, 2005, “
Transition Modeling for General CFD Applications in Aeronautics
,” AIAA Paper No. 2005-522.
44.
Traupel
,
W.
, 1977,
Thermische Turbomaschinen
,
Springer-Verlag
,
Berlin
.
45.
Dzung
,
L. S.
, 1971, “
Konsistente Mittewerte in der Theorie der Turbomaschinen für kompressible Medien
,”
BBC-Mitt.
,
58
, pp.
485
492
.
46.
Emunds
,
R.
,
Jennions
,
I. K.
,
Bohn
,
D.
, and
Gier
,
J.
, 1999, “
The Computation of Adjacent Blade-Row Effects in a 1.5-Stage Axial Flow Turbine
,”
ASME J. Turbomach.
,
121
, pp.
1
10
.
47.
Day
,
C. R. B.
,
Oldfield
,
M. L. G.
, and
Lock
,
G. D.
, 1999, “
The Influence of Film Cooling on the Efficiency of an Annular Nozzle Guide Vane Cascade
,”
ASME J. Turbomach.
,
121
, pp.
145
151
.
You do not currently have access to this content.