The liquid turbulence kinetic energy transfer between the liquid and gas phases was investigated for upward air-water bubbly flow in a 200 mm diameter pipe. The liquid and gas axial momentum equations were analyzed to estimate the interfacial drag from experimental measurements, and hence the liquid turbulence production due to the relative velocity of the bubbles. The liquid turbulence production due to the bubbles was significantly higher than that due to the liquid shear. The liquid turbulence kinetic energy budget indicates that the turbulence production due to the bubbles is approximately balanced by the viscous dissipation, estimated assuming an isotropic turbulence structure, with negligible dissipation due to the bubbles. The liquid turbulence kinetic energy spectra showed an addition of energy at length scales in the range corresponding to the bubble diameter. A model for the turbulence energy production spectra due to the bubbles is proposed and used to investigate the spectral turbulence energy budget. The model indicates that when there is a liquid turbulence augmentation, most of the production occurs in the low wave number range with only a small overlap with the viscous dissipation region. In the case of a turbulence suppression, most of the bubble production occurs in the same wave number range as the viscous dissipation.

References

References
1.
Serizawa
,
A.
,
Kataoka
,
I.
, and
Mischiyoshi
,
I.
, 1975, “
Turbulence Structure of Air-Water Bubbly Flow- II
,”
Int. J. Multiphase Flow
,
2
, pp.
235
246
.
2.
Sato
,
Y.
, and
Sekoguchi
,
K.
, 1975, “
Liquid Velocity Distribution in Two-Phase Bubble Flow
,”
Int. J. Multiphase Flow
,
2
, pp.
79
95
.
3.
Theofanous
,
T. G.
, and
Sullivan
,
J.
, 1982, “
Turbulence in Two-Phase Dispersed Flows
,”
J. Fluid Mech.
,
116
, pp.
343
362
.
4.
Serizawa
,
A.
, and
Kataoka
,
I.
, 1990, “
Turbulence Suppression in Bubbly Two-Phase Flow
,”
Nucl. Eng. Des.
,
122
, pp.
1
16
.
5.
Liu
,
T. J.
, and
Bankoff
,
S. G.
, 1993, “
Structure of Air-Water Bubbly Flow in a Vertical Pipe- I
,”
Int. J. Heat Mass Transfer
,
36
, pp.
1049
1060
.
6.
Liu
,
T. J.
, and
Bankoff
,
S. G.
, 1993, “
Structure of Air-Water Bubbly Flow in a Vertical Pipe- II
,”
Int. J. Heat Mass Transfer
,
36
, pp.
1061
1072
.
7.
Hibiki
,
T.
, and
Ishii
,
M.
, 1999, “
Experimental Study on Interfacial Area Transport in Bubbly Two-Phase Flows
,”
Int. J. Heat Mass Transfer
,
42
, pp.
3019
3035
.
8.
Ohnuki
,
A.
, and
Akimoto
,
H.
, 2000, “
Experimental Study on Transition of Flow Pattern and Phase Distribution in Upward Air-Water Two-Phase Flow Along a Large Vertical Pipe
,”
Int. J. Multiphase Flow
,
26
, pp.
367
386
.
9.
Michiyoshi
,
I.
, and
Serizawa
,
A.
, 1986, “
Turbulence in Two-Phase Bubble Flow
,”
Nucl. Eng. Des.
,
95
, pp.
253
267
.
10.
Wang
,
S. K.
,
Lee
,
S. J.
,
Jones
,
O. C.
Jr.
, and
Lahey
,
R. T.
Jr.
, 1987, “
3-D Turbulence Structure and Phase Distribution Measurements in Bubbly Two-Phase Flows
,”
Int. J. Multiphase Flow
,
13
, pp.
327
343
.
11.
Shawkat
,
M. E.
,
Ching
,
C. Y.
, and
Shoukri
,
M.
, 2008, “
Bubble and Liquid Turbulence Characteristics of Bubbly Flow in a Large Diameter Vertical Pipe
,”
Int. J. Multiphase Flow
,
34
, pp.
767
785
.
12.
Milica
,
I.
,
Worner
,
M.
, and
Cacuci
,
D.
, 2004, “
Balance of Liquid-Phase Turbulence Kinetic Energy Equation for Bubble-Train Flow
,”
J. Nucl. Sci. Technol.
,
41
, pp.
331
338
.
13.
Kataoka
,
I.
, 1986, “
Local Instant Formulation and Measurements of Two-Phase Flow
,”
Int. J. Multiphase Flow
,
12
, pp.
745
758
.
14.
Kataoka
,
I.
, and
Serizawa
,
A.
, 1989, “
Basic Equations of Turbulence in Gas-Liquid Two-Phase Flow
,”
Int. J. Multiphase Flow
,
15
, pp.
843
855
.
15.
Kataoka
,
I.
,
Besnard
,
D.
, and
Serizawa
,
A.
, 1992, “
Basic Equation of Turbulence and Modeling of Interfacial Transfer Terms in Gas-Liquid Two-Phase Flow
,”
Chem. Eng. Comm.
,
118
, pp.
221
236
.
16.
Kataoka
,
I.
,
Serizawa
,
A.
, and
Besnard
,
D.
, 1993, “
Prediction of Turbulence Suppression and Turbulence Modeling in Bubbly Two-Phase Flow
,”
Nucl. Eng. Des.
,
141
, pp.
145
158
.
17.
Kataoka
,
I.
, and
Serizawa
,
A.
, 1995, “
Modelling and Analysis of Turbulence Structure in Bubbly Flow
,”
1st International Symposium on Two Phase Flow Modelling and Experimentation,
Oct. 9-11,
Edizioni ETS
,
Rome, Italy
, pp.
459
466
.
18.
Lance
,
M.
, and
Bataille
,
J.
, 1991, “
Turbulence in the Liquid Phase of a Uniform Bubbly Air-Water Flow
,”
J. Fluid Mech.
,
222
, pp.
95
118
.
19.
Wang
,
S. K.
,
Lee
,
S.
,
Jones
,
O.
, and
Lahey
,
R.
, 1990, “
Statistical Analysis of Turbulent Two-Phase Pipe Flow
,”
ASME J. Fluids Eng.
,
112,
pp.
89
95
.
20.
Shawkat
,
M. E.
,
Ching
,
C. Y.
, and
Shoukri
,
M.
, 2007, “
On the Liquid Turbulence Energy Spectra in Two-Phase Bubbly Flow in a Large Diameter Vertical Pipe
,”
Int. J. Multiphase Flow
,
33
, pp.
300
316
.
21.
Farrar
,
B.
,
Samways
,
A.
,
Ali
,
J.
, and
Bruun
,
H.
, 1995, “
A Computer-Based Hot-Film Technique for Two-Phase Flow Measurements
,”
Meas. Sci. Technol.
,
6
, pp.
1528
1537
.
22.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
Experimentation and Uncertainty Analysis for Engineers
(
Wiley
,
NewYork
, 1999).
23.
Uga
,
T.
, 1972, “
Determination of Bubble-Size Distribution in bwr
,”
Nucl. Eng. Des.
,
22
, pp.
252
261
.
24.
Liu
,
T. J.
, 2002, “
An Effective Signal Processing Method for Resistivity Probe Measurements in a Two-Phase Bubbly Flow
,”
Meas. Sci. Technol.
,
13
, pp.
206
217
.
25.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
, 1978,
Bubbles, Drops and Particles
,
Academic
,
New York
.
26.
Lahey
,
R. T.
Jr.
,
Lopez de Bertodano
,
M.
, and
Jones
,
O. C.
Jr.
, 1993, “
Phase Distribution in Complex Geometry Conduits
,”
Nucl. Eng. Des.
,
141
, pp.
177
201
.
27.
Lumley
,
J. L.
, 1978, “
Computational Modeling of Turbulent Flows
,”
Adv. Appl. Mech.
,
18
, pp.
123
176
.
28.
Pope
,
S.
, 2005,
Turbulent Flows
,
4th ed.
,
Cambridge University Press
,
Cambridge, UK.
29.
Hinze
,
J. O.
, 1975,
Turbulence
,
2nd ed.
,
McGraw-Hill
,
New York.
You do not currently have access to this content.