The power law and log law velocity profiles and an integral analysis in a turbulent wall jet over a transitional rough surface have been proposed. Based on open mean momentum Reynolds equations, a two layer theory for large Reynolds numbers is presented and the matching in the overlap region is carried out by the Izakson-Millikan-Kolmogorov hypothesis. The velocity profiles and skin friction are shown to be governed by universal log laws as well as by universal power laws, explicitly independent of surface roughness, having the same constants as a fully smooth surface wall jet (or fully rough surface wall jet, as appropriate). The novel scalings for stream-wise variations of the flow over a rough wall jet have been analyzed, and best fit relations for maximum wall jet velocity, boundary layer thickness at maxima of wall jet velocity, the jet half width, the friction factor, and momentum integral are supported by the experimental data. There is no universality of scalings in traditional variables, and different expressions are needed for transitional roughness. The experimental data provides very good support to our universal relations proposed in terms of alternate variables.

References

References
1.
Rajaratnam
,
N.
, 1967, “
Plane Turbulent Wall Jets on Rough Boundaries
,”
Water Power
,
19
, pp.
149
153
, 196–201, 240–242.
2.
Hogg
,
A. J.
,
Huppert
,
R. E.
, and
Dade
,
W. B.
, 1997, “
Erosion by Planar Turbulent Wall Jets
,”
J. Fluid Mech.
,
338
, pp.
317
340
.
3.
Narasimha
,
R.
,
Narayan
,
K. Y.
, and
Parthasarathy
,
S. P.
, 1973, “
Parametric Analysis of Turbulent Wall Jet in Still Air
,”
Aeronaut. J.
,
77
, pp.
335
345.
4.
Smith
,
B. S.
, 2008, “
Wall Jet Boundary Layer Flows Over Smooth and Rough Surfaces.
” Ph.D. dissertation, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA.
5.
Tachie
,
M. F.
,
Balachander
,
R.
, and
Bergstrom
,
D. J.
, 2004, “
Roughness Effects on Turbulent Plane Wall Jets in an Open Channel
,”
Exp. Fluids
,
37
, pp.
281
292
.
6.
Rostamy
,
N.
,
Bergstrom
,
D. J.
, and
Sumner
,
D.
, 2010, “
Experimental Study of a Turbulent Wall Jet on a Rough Surface
,”
IUTAM Symposium on the Physics of Wall-Bounded Flows on Rough Walls
, Cambridge, UK, July 7–9,
T. B.
Nickles
, ed.,
Springer
,
New York
, pp.
55
60
.
7.
Dey
,
S.
,
Nath
,
T. K.
, and
Bose
,
S. K.
, 2010, “
Fully Rough Submerged Plane Wall-Jets
,”
J. Hydro-environment Res.
,
4
(
4
), pp.
301
316
.
8.
Afzal
,
N.
, 2005, “
Analysis of Power Law and Log Law Velocity Profiles in Overlap Region of a Turbulent Wall Jet
,”
Proc. R. Soc. London
,
461
, pp.
1889
1910
.
9.
Tangemann
,
R.
, and
Gretler
,
W.
, 1998, “
The Assessment of Different Turbulence Models for a Wall Jet
,”
ZAMM
,
78
(
2
), pp.
S763
S764
.
10.
George
,
W.
,
Abrahamsson
,
H.
,
Eriksson
,
J.
,
Karlsson
,
R. L.
,
Lofdahl
,
L.
, and
Wosnik
,
M.
, 2000, “
A Similarity Theory for the Turbulent Plane Wall Jet Without External Stream
,”
J. Fluid Mech.
,
425
, pp.
367
411
.
11.
Afzal
,
N.
, 2008, “
Alternate Scales of Turbulent Boundary Layer on Transitional Rough Walls: Universal Log Laws
,”
ASME Trans. J. Fluids Eng.
,
130
(
4
), p.
041202
.
12.
Afzal
,
N.
,
Seena
,
A.
, and
Bushra
,
A.
, 2011, “
Discussion of ‘Velocity Profile and Flow Resistance Models for Developing Chute Flow by Oscar Castro Orgaz
, J. Hydraul. Eng. 136(7), 447–452, 2010,” J. Hydraul. Eng., 137(9), (to be published).
13.
Clauser
,
F. H.
, 1956, “
The Turbulent Boundary Layers
,”
Adv. Appl. Mech.
,
4
, pp.
1
51
.
14.
Antonia
,
R. A.
, and
Krogstad
,
P. A.
, 2001, “
Turbulence Structure in Boundary Layer Over Different Types of Surface Roughness
,”
Fluid Dyn. Res.
,
28
, pp.
139
157
.
15.
Lykossov
,
V. N.
, 1992, “
The Momentum Turbulent Counter-Gradient and Transfer
,”
Adv. Atmos. Sci.
,
9
, pp.
191
200
.
16.
Glauert
,
M. B.
, 1956, “
The Wall Jet
,”
J. Fluid Mech.
,
1
, pp.
625
650
.
17.
Afzal
,
N.
, 1980, “
Second Order Effects in Wall Jets
,”
J. Mec.
,
19
, pp.
387
402
.
18.
Townsend
,
A. A.
, 1976,
The Structure of Turbulent Shear Flow
,
Cambridge University Press
,
UK
, pp.
272
277
.
19.
Colebrook
,
C. F.
, 1939, “
Turbulent Flow in Pipes With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
Proc.-Inst. Civ. Eng.
,
11
, pp.
133
156
.
20.
Wygnanski
,
I.
,
Katz
,
Y.
, and
Horev
,
E.
, 1992, “
On the Applicability of Various Scaling Laws to the Turbulent Wall Jet
,”
J. Fluid Mech.
,
234
, pp.
669
690
.
21.
Bradshaw
,
P.
, and
Gee
,
M. Y.
, 1960, “
The Wall Jet With or Without Free Stream
,”
Aero. Res. Counc. Rep. Mem.
,
338
, pp.
3252
22.
Patel
,
P.
, 1962, “
Self Preserving Two Dimensional Turbulent Jets and Wall Jets in a Moving Stream
,” M.Sc. thesis, McGill University, Montreal.
23.
Tailland
,
A.
and
Mathieu
,
J. Y.
, 1965, “
Jet Parietal
,”
Academie des Sciences- Comptes Rendus
,
261
(
12
), pp.
2282
2285
.
24.
Ozarapoquv
,
V.
, 1973, “
Measurements in Incompressible Turbulent Flows
,” D.Sc. thesis, Laval University, Quebec City.
25.
Karlsson
,
R. I.
,
Eriksson
,
J. G.
, and
Persson
,
J.
, 1998, “
An Experimental Study of a Two-Dimensional Plane Turbulent Wall Jet
,”
Exp. Fluids
,
25
, pp.
50
60
.
26.
Tachie
,
M. F.
,
Balachandar
,
R.
, and
Bergstrom
,
D. J.
, 2002, “
The Inner Region of a Turbulent Wall Jet
,”
Exp. Fluids
,
33
, pp.
351
354
.
You do not currently have access to this content.