We perform direct numerical simulations of decaying magnetohydrodynamic turbulence subject to initially uniform or random magnetic fields. We investigate the following features: (i) kinetic–magnetic energy exchange and velocity field anisotropy, (ii) action of Lorentz force, (iii) enstrophy and helicity behavior, and (iv) internal structure of the small scales. While tendency toward kinetic–magnetic energy equi-partition is observed in both uniform and random magnetic field simulations, the manner of approach to that state is very different in the two cases. Overall, the role of the Lorentz force is merely to bring about the equi-partition. No significant variance anisotropy of velocity fluctuations is observed in any of the simulations. The mechanism of enstrophy generation changes with the strength of the magnetic field, and helicity shows no significant growth in any of the cases. The small-scale structure (orientation between vorticity and strain-rate eigenvectors) does not appear to be influenced by the magnetic field.

References

References
1.
Roy
,
R. I. S.
,
Hastings
,
D. E.
, and
Taylor
,
S.
, 1996, “
Three-Dimensional Plasma Particle-in-Cell Calculations of Ion Thruster Backflow Contamination
,”
J. Comput. Phys.
,
128
, pp.
6
18
.
2.
Haas
,
J. M.
, and
Gallimore
,
A. D.
, 2001, “
Internal Plasma Potential Profiles in a Laboratory-Model Hall Thruster
,”
Phys. Plasmas
,
38
(
2
), pp.
652
660
.
3.
Tarditi
,
A. G.
, and
Shebalin
,
J. V.
, 2003, “
Magnetic Nozzle Plasma Exhaust Simulation for the VASIMR Advanced Propulsion Concept
,”
28th International Electric Propulsion Conference
.
4.
Macheret
,
S. O.
Shneider
,
M. N.
, and
Miles
,
R. B.
, 2002, “
Magnetohydrodynamic Control of Hypersonic Flows and Scramjets Using Electron Beam Ionization
,”
AIAA J.
,
40
(
1
), pp.
74
81
.
5.
Riley
,
B. M.
,
Girimaji
,
S. S.
, and
Richard
,
J. C.
, 2009, “
Magnetic Field Effects on Axis-Switching and Instabilities in Rectangular Plasma Jets
,”
Flow, Turbul. Combust.
,
82
(
3
), pp.
375
390
.
6.
Nishihara
,
M.
,
Jiang
,
N.
,
Rich
,
J. W.
,
Lempert
,
W. R.
,
Adamovich
,
I. V.
, and
Gogineni
,
S.
, 2005, “
Low-Temperature Supersonic Boundary Layer Control Using Repetitively Pulsed Magnetohydrodynamic Forcing
,”
Phys. Fluids
,
17
, p.
106102
.
7.
Pattison
,
M.
,
Premnath
,
K.
,
Morley
,
N.
, and
Abdou
,
M.
, 2008, “
Progress in Lattice Boltzmann Methods for Magnetohydrodynamic Flows Relevant to Fusion Applications
,”
Fusion Eng. Des.
,
83
(
4
), pp.
557
572
.
8.
Chen
,
F. F.
, 1984,
Introduction to Plasma Physics and Controlled Fusion
,
2nd ed.
,
Springer
,
Berlin
, corrected 2nd printing, 2006.
9.
Knaepen
,
B.
Kassinos
,
S. C.
, and
Carati
,
D.
, 2004, “
Magnetohydrodynamic Turbulence at Moderate Magnetic Reynolds Numbers
,”
J. Fluid Mech.
,
513
, pp.
199
220
.
10.
Matthaeus
,
W. H.
,
Ghosh
,
S.
,
Oughton
,
S.
, and
Roberts
,
D. A.
, 1996, “
Anisotropic Three Dimensional MHD Turbulence
,”
J. Geophys. Res. [Space Phys.]
,
101
(
A4
), pp.
7619
7629
.
11.
Miller
,
R. S.
,
Mashayek
,
F.
,
Adumitoraie
,
V.
, and
Givi
,
P.
, 1996, “
Structure of Homogeneous Nonhelical Magnetohydrodynamic Turbulence
,”
Phys. Plasmas
,
3
(
9
), pp.
3304
3317
.
12.
Müller
,
W. C.
, and
Grappin
,
R.
, 2005, “
Spectral Energy Dynamics in Magnetohydrodynamic Turbulence
,”
Phys. Rev. Lett.
,
95
,p.
114502
.
13.
Ponty
,
Y.
,
Mininni
,
P. D.,
Montgomery
,
D. C.,
Pinton
,
J.-F.
,
Politano
,
H.
, and
Pouquet
,
A.
, 2005, “
Numerical Study of Dynamo Action at Low Magnetic Prandtl Numbers
,”
Phys. Rev. Lett.
,
94
, p.
164502
.
14.
Davidson
,
P. A.
, 2001,
An Introduction to Magnetohydrodynamics
,
Cambridge Univ. Press, Cambridge
,
UK.
15.
Shebalin
,
J. V.
,
Matthaeus
,
W. H.
, and
Montgomery
,
D. C.
, 1983, “
Anisotropy in MHD Turbulence due to a Mean Magnetic Field
,”
J. Plasma Phys.
,
29
, pp.
525
547
.
16.
Shebalin
,
J. V.
, 2004, “
Magnetic Prandtl Number Effects in MHD Turbulence
,”
31st EPS Conference on Plasma Physics
,
EPS
.
17.
Shebalin
,
J.
, 2007, “
Broken Symmetries and Magnetic Dynamos
,”
Phys. Plasmas
,
14
, p.
102301
.
18.
Mininni
,
P. D.
,
Ponty
,
Y.
,
Montgomery
,
D. C.
,
Pinton
,
J.-F.
,
Politano
,
H.
, and
Pouquet
,
A.
, 2005, “
Dynamo Regimes With a Nonhelical Forcing
,”
Astrophys. J.
,
626
, pp.
853
863
.
19.
Biskamp
,
D.
, 2003,
Magnetohydrodynamic Turbulence
,
Cambridge Univ. Press, Cambridge
,
UK
.
20.
Sokoloff
,
D.
, and
Frick
,
P.
, 2003, “
Model of a Multiscaled MHD Dynamo
,”
Astron. Rep.
,
47
(
6
), pp.
511
516
.
21.
Brandenburg
,
A.
, and
Käpylä
,
P.
, 2007, “
Magnetic Helicity Effects in Astrophysical and Laboratory Dynamos
,”
New J. Phys.
,
9
, p.
305
.
22.
Ponty
,
Y.
,
Gilbert
,
A.
, and
Soward
,
A.
, 2001, “
Kinematic Dynamo action in Large Magnetic Reynolds Number Flows Driven by Shear and Convection
,”
J. Fluid Mech.
,
435
, pp.
261
287
.
23.
Shebalin
,
J.
, 2009, “
Plasma Relaxation and the Turbulent Dynamo
,”
Phys. Plasmas
,
16
,
072301
.
24.
Yoshizawa
,
A.
,
Itoh
,
S.-I.
, and
Itoh
,
K.
, 2003,
Plasma and Fluid Turbulence: Theory and Modeling
,
Institute of Physics and Physical Society
,
London
.
25.
Balsara
,
D.
and
Pouquet
,
A.
, 1999, “
The Formation of Large-Scale Structures in Supersonic Magnetohydrodynamic Flows
,”
Phys. Plasmas
,
6
, p.
89
.
26.
Kenjereš
,
S.
, and
Hanjalić
,
K.
, 2007. “
Numerical Insights Into Magnetic Dynamo Action in a Turbulent Regime
,”
New J. Phys.
,
9
, p.
306
.
27.
Ting
,
A. C.
,
Matthaeus
,
W. H.
, and
Montgomery
,
D. C.
, 1986, “
Turbulent Relaxation Processes in Magnetohydrodynamics
,”
Phys. Fluids
,
29
, pp.
3261
3274
.
28.
Kerimo
,
J.
, and
Girimaji
,
S.
, 2007, “
Boltzmann–BGK Approach to Simulating Weakly Compressible 3D Turbulence: Comparison Between Lattice Boltzmann and Gas Kinetic Methods
,”
J. Turbul.
,
8
(
1
), pp.
1
16
.
29.
Pouquet
,
A.
, and
Patterson
,
G.
, 1978, “
Numerical Simulation of Helical Magnetohydrodynamic Turbulence
,”
J. Fluid Mech.
,
85
(
2
), pp.
305
323
.
30.
Riley
,
B. M.
,
Richard
,
J. C.
, and
Girimaji
,
S. S.
, 2008. “
Assessment of Magnetohydrodynamic Lattice Boltzmann Schemes in Turbulence and Rectangular Jets
,”
Int. J. Modern Phys. C: Comput. Phys. Phys. Comput.
,
18
(
8
), pp.
1211
1220
.
31.
Dellar
,
P.
, 2002, “
Lattice Kinetic Schemes for MHD
,”
J. Comput. Phys.
,
179
, p.
95126
.
32.
Shebalin
,
J. V.
, 2005, “
Theory and Simulation of Real and Ideal Magnetohydrodynamic Turbulence
”.
Discrete Contin. Dyn. Syst. Ser. B
,
5
(
1
),
153174
.
33.
Pouquet
,
A.
,
Frisch
,
U.
, and
Léorat
,
J.
, 1976, “
Strong MHD Helical Turbulence and the Nonlinear Dynamo Effect
,”
J. Fluid Mech.
,
77
, pp.
321
354
.
34.
Verma
,
M.
,
Ayyer
,
A.
, and
Chandra
,
A.
, 2005, “
Energy Transfers and Locality in Magnetohydrodynamic Turbulence
,”
Phys. Plasmas
,
12
, p.
082307
.
35.
Lee
,
K.
,
Yu
,
D.
, and
Girimaji
,
S. S.
, 2006, “
Lattice Boltzmann DNS of Decaying Compressible Isotropic Turbulence With Temperature Fluctuations
,”
Int. J. Comput. Fluid Dyn.
,
20
(
6
), pp.
401
413
.
You do not currently have access to this content.