Characteristics of turbulent mass transfer around a rotating circular cylinder have been investigated by Direct Numerical Simulation. The concentration field was computed for three different cases of Schmidt number, Sc = 1, 10 and 100 at ReR* = 336. Our results confirm that the thickness of the Nernst diffusion layer decreases as Sc increases. Wall-limiting behavior within the diffusion layer was examined and compared with that of channel flow. Concentration fluctuation time scale was found to scale with r+2, while the time scale ratio nearly equals the Schmidt number throughout the diffusion layer. Scalar modeling closure constants based on gradient diffusion models were found to vary considerably within the diffusion layer. Results of an octant analysis show the significant role played by the ejection and sweep events just as is found for flat plate, channel, and pipe flow boundary layers. Turbulence budgets revealed a strong Sc dependence of turbulent scalar transport.

References

References
1.
Kader
,
B. A.
, and
Yaglom
,
A. M.
, 1972, “
Heat and Mass Transfer Laws for Fully Turbulent Wall Flows
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2329
2351
.
2.
Kader
,
B. A.
, 1981, “
Temperature and Concentration Profiles in Fully Turbulent Boundary Layers
,”
Int. J. Heat Mass Transfer
,
24
(
9
), pp.
1541
1544
.
3.
Shaw
,
D. A.
, and
Hanratty
,
T. J.
, 1977, “
Turbulent Mass Transfer Rates to a Wall for Large Schmidt Numbers
”,
AIChE J.
,
23
(
1
), pp.
28
37
.
4.
Petty
,
C. A.
, 1975, “
A Statistical Theory For Mass Transfer Near Interfaces
,”
Chem. Eng. Sci.
,
30
(
4
), pp.
413
418
.
5.
Hasegawa
,
Y.
, and
Kasagi
,
N.
, 2009, “
Low-Pass Filtering Effects of Viscous Sublayer on High Schmidt Number Mass Transfer Close to a Solid Wall
,”
Int. J. Heat Fluid Flow
,
30
(
3
), pp.
525
533
.
6.
Mitrovic
,
B. M.
,
Le
,
P. M.
, and
Papavassiliou
,
D. V.
, 2004, “
On the Prandtl or Schmidt Number Dependence of the Turbulent Heat or Mass Transfer Coefficient
”,
Chem. Eng. Sci.
,
59
(
3
), pp.
543
555
.
7.
Na
,
Y.
,
Papavassiliou
,
D. V.
, and
Hanratty
,
T. J.
, 1999, “
Use of Direct Numerical Simulation to Study the Effect of Prandtl Number on Temperature Fields
,”
Int. J. Heat Fluid Flow
,
20
(
3
), pp.
187
195
.
8.
Eisenberg
,
M.
,
Tobias
,
C. W.
, and
Wilke
,
C. R.
, 1954, “
Ionic Mass Transfer and Concentration Polarization at Rotating Electrodes
,”
J. Electrochem. Soc.
,
101
(
6
), pp.
306
320
.
9.
Calmet
,
I.
, and
Magnaudet
,
J.
, 1997, “
Large-Eddy Simulation of High-Schmidt Number Mass Transfer in a Turbulent Channel Flow
,”
Phys. Fluids
,
9
(
2
), pp.
438
455
.
10.
Kim
,
J.
, and
Moin
,
P.
, 1989, “
Transport of Passive Scalars in a Turbulent Channel Flow
,”
Turbulent Shear Flows
,
6
, pp.
85
96
.
11.
Kasagi
,
N.
,
Tomita
,
Y.
, and
Kuroda
,
A.
, 1992, “
Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow
,”
ASME J. Heat Transfer
,
114
(
3
), pp.
598
606
.
12.
Kawamura
,
H.
,
Ohsaka
,
K.
,
Abe
,
H.
,
And Yamamoto
,
K.
, 1998, “
DNS of Turbulent Heat Transfer in Channel Flow With Low to Medium-High Prandtl Number Fluid
,”
Int. J. Heat Fluid Flow
,
19
(
5
), pp.
482
491
.
13.
Piller
,
M.
,
Nobile
,
E.
, and
Hanratty
,
T. J.
, 2002, “
DNS Study of Turbulent Transport at Low Prandtl Numbers in a Channel Flow
,”
J. Fluid Mech.
,
458
, pp.
419
441
.
14.
Gabe
,
D. R.
, 1974, “
The Rotating Cylinder Electrode
,”
J. Appl. Electrochem.
,
4
(
2
), pp.
91
108
.
15.
Silverman
,
D. C.
, 1988, “
Rotating Cylinder Electrode-Geometry Relationships for Prediction of Velocity-Sensitive Corrosion
,”
Corrosion-NACE
,
44
(
1
), pp.
42
49
.
16.
Yang
,
K.-S.
,
Hwang
,
J.-Y.
, and
Bremhorst
,
K.
, 2003, “
Numerical Investigation of Turbulent Flow Around a Rotating Stepped Cylinder for Corrosion Study
,”
Can. J. Chem. Eng.
,
81
(
1
), pp.
26
36
.
17.
Hwang
,
J.-Y.
,
Yang
,
K.-S.
and
Bremhorst
,
K.
, 2007, “
Direct Numerical Simulation of Turbulent Flow Around a Rotating Circular Cylinder
,”
J. Fluids Eng.
,
129
(
1
), pp.
40
47
.
18.
Hwang
,
J.-Y.
,
Yang
,
K.-S.
,
Yoon
,
D.-H.
and
Bremhorst
,
K.
, 2008, “
Flow Field Characterization of a Rotating Cylinder
,”
Int. J. Heat Fluid Flow
,
29
(
5
), pp.
1268
1278
.
19.
Leonard
,
B. P.
, 1988, “
Simple High-Accuracy Resolution Program for Convective Modeling of Discontinuity
,”
Int. J. Numer. Method Fluids
,
8
(
10
), pp.
1291
1318
.
20.
Akselvoll
,
K.
, and
Moin
,
P.
, 1995,
“Large Eddy Simulation of Turbulent Confined Coannular Jets and Turbulent Flow Over a Backward Facing Step,”
Department of Mechanical Engineering, Stanford University
,
Palo Alto
, Report No. TF-63.
21.
Na
,
Y.
, and
Hanratty
,
T.J.
, 2000, “
Limiting Behavior of Turbulent Scalar Transport Close to a Wall
,”
Int. J. Heat Mass Transfer
,
43
(
10
), pp.
1749
1758
.
22.
Keating
,
A.
,
Bilson
,
M. J.
,
Bremhorst
,
K.
, and
Nesic
,
S.
, 2002,
“Investigation of Scalar Transport Closures Using Direct Numerical Simulation,”
Proceedings of the Second International Conference for Computational Fluid Dynamics
,
ICCFD
,
Sydney, Australia
, pp.
787
788
.
23.
Wilcox
,
D. C.
, 1988,
“Turbulent Modeling for CFD,”
DCW Industries
,
La Canada, CA
.
24.
Launder
,
B. E.
, 1998, “
On the Computation of Convective Heat Transfer in Complex Turbulent Flows
,”
J. Heat Transfer
,
110
(
4b
), pp.
1112
1128
.
25.
Purchase
,
A. E.
, 2009,
“Investigation of High Prandtl Number Scalar Transfer in Turbulent Flow,”
Ph.D. thesis, The University of Queensland, Brisbane, Australia.
26.
Volino
,
R. J.
, and
Simon
,
T. W.
, 1994, “
An Application of Octant Analysis to Turbulent and Transitional Flow Data
,”
J. Turbomach.
,
116
(
4
), pp.
752
758
.
You do not currently have access to this content.