The flow field generated by the combination of a downward-oriented annular slot jet with a circumferential velocity component and a suction port in the space between two horizontal planes is referred to as a bounded vortex flow. The current paper reports on an experimental study of the flow field and its ability to transport particles. Particle image velocimetry measurement shows that the ratio of the inlet to outlet flow rate and the ratio of the plate separation distance to the jet inlet radius control the wall-normal vortex strength and entrainment of the jet into the suction port. A toroidal vortex ring was also observed to form in certain cases. In particle experiments a separatrix curve is observed beyond which particles roll outward and within which particles roll inward; thus forming a cleaned region with radius that decreases with increase in the flow rate ratio.

References

References
1.
Dey
,
S.
, and
Papanicolaou
,
A.
, 2008, “
Sediment Threshold Under Stream Flow: A State-of-the-Art Review
,”
KSCE J. Civ. Eng.
,
12
(
1
), pp.
45
60
.
2.
Onslow
,
R. J.
,
Thomas
,
N. H.
, and
Whitehouse
,
R. J. S.
, 1993, “
Vorticity and Sandwaves: The Dynamics of Ripples and Dunes
,” in
Turbulence: Perspectives on Flow and Sediment Transport
, edited by
N. J.
Clifford
,
J. R.
French
and
J.
Hardisty
,
John Wiley & Sons
,
New York.
3.
Hollingsworth
,
D. K.
Witte
,
L. C.
Hinke
,
J.
, and
Hurlbert
,
K.
, 2006, “
Reduction in Emittance of Thermal Radiator Coatings Caused by the Accumulation of a Martian Dust Stimulant
,”
Appl. Therm. Eng.
,
26
, pp.
2383
2392
.
4.
Landis
,
G. A.
, 1996, “
Dust Obscuration of Mars Solar Arrays
,”
Acta Astronaut.
,
38
(
11
), pp.
885
891
.
5.
Sutherland
,
A. J.
, 1967, “
Proposed Mechanism for Sediment Entrainment by Turbulent Flows
,”
J. Geophys. Res.
,
72
(
24
), pp.
6183
6194
.
6.
Jackson
,
R. G.
, 1976, “
Sedimentological and Fluid-Dynamic Implications of the Turbulent Bursting Phenomenon in Geophysical Flows
,”
J. Fluid Mech.
,
77
(
3
), pp.
531
560
.
7.
Sumner
,
B. M.
, and
Oğuz
,
B.
, 1978, “
Particle Motions Near the Bottom in Turbulent Flow in an Open Channel
,”
J. Fluid Mech.
,
86
(
1
), pp.
109
127
.
8.
Soltani
,
M.
, and
Ahmadi
,
G.
, 1994, “
On Particle Adhesion and Removal Mechanisms
,”
J. Adhes. Sci. Technol.
,
8
(
7
), pp.
763
785
.
9.
Soltani
,
M.
, and
Ahmadi
,
G.
, 1995, “
Direct Numerical Simulation of Particle Entrainment in Turbulent Channel Flow
,”
Phys. Fluids
,
7
(
3
), pp.
647
657
.
10.
Pan
,
Y.
, and
Banerjee
,
S.
, 1996, “
Numerical Simulation of Particle Interactions With Wall Turbulence
,”
Phys. Fluids
,
8
(
10
), pp.
2733
2755
.
11.
Dritselis
,
C. D.
, and
Vlachos
,
N. S.
, 2008, “
Numerical Study of Educed Coherent Structures in the Near-Wall Region of a Particle-Laden Channel Flow
,”
Phys. Fluids
,
20
, p.
055103
.
12.
Kaftori
,
D.
,
Hetsroni
,
G.
, and
Banerjee
,
S.
, 1995a, “
Particle Behavior in the Turbulent Boundary Layer. I. Motion, Deposition, and Entrainment
,”
Phys. Fluids
,
7
(
5
), pp.
1095
1106
.
13.
Kaftori
,
D.
,
Hetsroni
,
G.
, and
Banerjee
,
S.
, 1995b, “
Particle Behavior in the Turbulent Boundary Layer. II. Velocity and Distribution Profiles
,”
Phys. Fluids
,
7
(
5
), pp.
1107
1121
.
14.
Niño
,
Y.
, and
Garcia
,
M. H.
, 1996, “
Experiments on Particle-Turbulence Interactions in the Near-Wall Region of an Open Channel Flow: Implications for Sediment Transport
,”
J. Fluid Mech.
,
326
, pp.
285
319
.
15.
Kaftori
,
D.
,
Hetsroni
,
G.
, and
Banerjee
,
S.
, 1994, “
Funnel-Shaped Vortical Structures in Wall Turbulence
,”
Phys. Fluids
,
6
(
9
), pp.
3035
3050
.
16.
Munro
,
R. J.
,
Bethke
,
N.
, and
Dalziel
,
S. B.
, 2009, “
Sediment Resuspension and Erosion by Vortex Rings
,”
Phys. Fluids
,
21
, p.
046601
.
17.
Masuda
,
H.
,
Gotoh
,
K.
,
Fukada
,
H.
, and
Banba
,
Y.
, 1994, “
The Removal of Particles From Flat Surfaces Using a High-Speed Air Jet
,”
Adv. Powder Technol.
,
5
, pp.
205
217
.
18.
Zhang
,
X. W.
,
Yao
,
Z. H.
,
Hao
,
P. F.
, and
Xu
,
H. Q.
, 2002, “
Study on Particle Removal Efficiency of an Impinging Jet by an Image-Processing Method
,”
Exp. Fluids
,
32
(
3
), pp.
376
380
.
19.
Otani
,
Y.
,
Namiki
,
N.
, and
Emi
,
H.
, 1995, “
Removal of Fine Particles From Smooth Flat Surfaces by Consecutive Pulse Air Jets
,”
Aerosol Sci. Technol.
,
23
, pp.
665
673
.
20.
Ziskind
,
G.
,
Yarin
,
L. P.
,
Peles
,
S.
, and
Gutfinger
,
C.
, 2002, “
Experimental Investigation of Particle Removal From Surfaces by Pulsed Air Jets
,”
Aerosol Sci. Technol.
,
36
, pp.
652
659
.
21.
Anderson
,
S. L.
, and
Longmire
,
E. K.
, 1995, “
Particle Motion in the Stagnation Zone of an Impinging Air Jet
,”
J. Fluid Mech.
,
299
, pp.
333
366
.
22.
Maynard
,
A. B.
, 2011, “
Particle Removal From a Surface by a Bounded Vortex Flow
,” M.S. thesis, The University of Vermont, Burlington, Vermont.
23.
Parras
,
L.
, and
Fernandez-Feria
,
R.
, 2007, “
Interaction of an Unconfined Vortex With a Solid Surface
,”
Phys. Fluids
,
19
, p.
067104
.
24.
Long
,
R. R.
, 1961, “
A Vortex in an Infinite Viscous Fluid
,”
J. Fluid Mech.
,
11
, pp.
611
624
.
25.
Kurosaka
,
M.
,
Christiansen
,
W. H.
,
Goodman
,
J. R.
,
Tirres
,
L.
, and
Wohlman
,
R. A.
, 1988, “
Crossflow Transport Induced by Vortices
,”
AIAA Journal
,
26
(
11
), pp.
1403
1405
.
26.
Cohn
,
R. K.
, and
Koochesfahani
,
M. M.
, 1993, “
Effect of Boundary Conditions on Axial Flow in a Concentrated Vortex Core
,”
Phys. Fluids
,
A5
(
1
), pp.
280
282
.
27.
Burggraf
,
O. R.
,
Stewartson
,
K.
, and
Belcher
,
R.
, 1971, “
Boundary Layer Induced by a Potential Vortex
,”
Phys. Fluids
,
14
(
9
), pp.
1821
1833
.
28.
Belcher
,
R. J.
,
Burggraf
,
O. R.
, and
Stewartson
,
K.
, 1972, “
On Generalized-Vortex Boundary Layers
,”
J. Fluid Mech.
,
52
(
4
), pp.
753
780
.
29.
Bellamy-Knights
,
P. G.
, 1974, “
An Axisymmetric Boundary Layer Solution for an Unsteady Vortex Above a Plane
,”
Tellus
,
26
(
3
), pp.
318
324
.
30.
Phillips
,
W. R. C.
, 1985, “
On Vortex Boundary Layers
,”
Proc. R. Soc. A
,
400
, pp.
253
261
.
31.
Phillips
,
W. R. C.
, and
Khoo
,
B. C.
, 1987, “
The Boundary Layer Beneath a Rankine-like Vortex
,”
Proc. R. Soc. A
,
411
, pp.
177
192
.
32.
Hirsa
,
A.
,
Lopez
,
J. M.
, and
Kim
,
S.
, 2000, “
Evolution of an Initially Columnar Vortex Terminating Normal to a No-Slip Wall
,”
Exp. Fluids
,
29
, pp.
309
321
.
33.
Chiriac
,
V. A.
, and
Ortega
,
A.
, 2002, “
A Numerical Study of the Unsteady Flow and Heat Transfer in a Transitional Confined Slot Jet Impinging on an Isothermal Surface
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1237
1248
.
34.
Chatterjee
,
A. J.
, 2008, “
Multiple Vortex Formation in Steady Laminar Axisymmetric Impinging Flow
,”
Comput. Fluids
,
37
, pp.
1061
1076
.
35.
Wen
,
M. Y.
, and
Jang
,
K. J.
, 2003, “
An Impingement Cooling on a Flat Surface by Using Circular Jet With Longitudinal Swirling Strips
,”
Int. J. Heat Mass Transfer
,
46
, pp.
4657
4667
.
36.
Chattopadhyay
,
H.
, 2004, “
Numerical Investigations of Heat Transfer From Impinging Annular Jet
,”
Int. J. Heat Mass Transfer
,
47
, pp.
3197
3201
.
37.
Kim
,
K. C.
,
Min
,
Y. U.
,
Oh
,
S. J.
,
An
,
N. H.
,
Seoudi
,
B.
,
Chun
,
H. H.
, and
Lee
,
I.
, 2007, “
Time-Resolved PIV Investigation on the Unsteadiness of a Low Reynolds Number Confined Impinging Jet
,”
J. Visualization
,
10
(
4
), pp.
367
379
.
38.
Lee
,
H. G.
,
Yoon
,
H. S.
, and
Ha
,
M. Y.
, 2008, “
A Numerical Investigation on the Fluid Flow and Heat Transfer in the Confined Impinging Slot Jet in the Low Reynolds Number Region for Different Channel Heights
,”
Int. J. Heat Mass Transfer
,
51
, pp.
4055
4068
.
39.
Munro
,
R. J.
, and
Dalziel
,
S. B.
, 2005, “
Attenuation Technique for Measuring Sediment Displacement Levels
,”
Exp. Fluids
,
39
, pp.
600
611
.
You do not currently have access to this content.