We propose a power-law based effective mean free path (MFP) model so that the Navier-Stokes-Fourier equations can be employed for the transition-regime flows typical of gas micro/nanodevices. The effective MFP model is derived for a system with planar wall confinement by taking into account the boundary limiting effects on the molecular free paths. Our model is validated against molecular dynamics simulation data and compared with other theoretical models. As gas transport properties can be related to the mean free path through kinetic theory, the Navier-Stokes-Fourier constitutive relations are then modified in order to better capture the flow behavior in the Knudsen layers close to surfaces. Our model is applied to fully developed isothermal pressure-driven (Poiseuille) and thermal creep gas flows in microchannels. The results show that our approach greatly improves the near-wall accuracy of the Navier-Stokes-Fourier equations, well beyond the slip-flow regime.

References

References
1.
Maxwell
,
J. C.
, 1879, “
On Stresses in Rarefied Gases Arising From Inequalities of Temperature
,”
Phil. Trans. R. Soc.
,
170
, pp.
231
256
.
2.
Lockerby
,
D. A.
,
Reese
,
J. M.
, and
Gallis
,
M. A.
, 2005, “
The Usefulness of Higher-Order Constitutive Relations for Describing the Knudsen Layer
,”
Phys. Fluids
,
17
, p.
100609
(2005).
3.
Sone
,
Y.
, 2002,
Kinetic Theory and Fluid Dynamics
,
Birkhauser
,
Boston
.
4.
Bird
,
G. A.
, 1994,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Oxford University Press
,
New York
.
5.
Cercignani
,
C.
,
Frangi
,
A.
,
Lorenzani
,
S.
, and
Vigna
,
B.
, 2007, “
BEM Approaches and Simplified Kinetic Models for the Analysis of Damping in Deformable MEMS
,”
Eng Anal Bound Elem
,
31
, pp.
451
457
.
6.
Lockerby
,
D. A.
,
Reese
,
J. M.
, and
Gallis
,
M. A.
, 2005, “
Capturing the Knudsen Layer in Continuum-Fluid Models of Non-equilibrium Gas Flows
,”
AIAA J.
,
43
, pp.
1391
1393
.
7.
Lilley
,
C. R.
, and
Sader
,
J. E.
, 2007, “
Velocity Gradient Singulary and Structure of the Velocity Profile in the Knudsen Layer According to the Boltzmann Equation
,”
Phys. Rev. E
,
76
, p.
026315
.
8.
Lockerby
,
D. A.
, and
Reese
,
J. M.
, 2008, “
On the Modelling of Isothermal Gas Flows at the Microscale
,”
J. Fluid Mech.
,
604
, pp.
235
261
.
9.
Zhang
,
Y. H.
,
Gu
,
X. J.
,
Barber
,
R. W.
, and
Emerson
,
D. R.
, 2006, “
Capturing Knudsen Layer Phenomena Using a Lattice Boltzmann Model
,”
Phys. Rev. E
,
74
, p.
046704
.
10.
Guo
,
Z. L.
,
Shi
,
B. C.
, and
Zheng
,
C. G.
, 2007, “
An Extended Navier-Stokes Formulation for Gas Flows in the Knudsen Layer Near a Wall
,”
EPL
,
80
, pp.
24001
24006
.
11.
Stops
,
D. W.
, 1970, “
The Mean Free Path of Gas Molecules in the Transition Regime
,”
J. Phys. D: Appl. Phys.
,
3
, pp.
685
696
.
12.
Kennard
,
E. H.
, 1938,
Kinetic Theory of Gases with an Introduction to Statistical Mechanics
,
McGraw-Hill
,
New York
.
13.
Arlemark
,
E. J.
,
Dadzie
,
S. K.
, and
Reese
,
J. M.
, 2010, “
An Extension to the Navier-Stokes Equations to Incorporate Gas Molecular Collisions With Boundaries
,”
J. Heat Transfer
,
132
, p.
041006
.
14.
Dongari
,
N.
,
Zhang
,
Y. H.
, and
Reese
,
J. M.
, 2011, “
Molecular Free Path Distribution in Rarefied Gases
,”
J. Phys. D: Appl. Phys.
,
44
, p.
125502
.
15.
Arlemark
,
E. J.
, and
Reese
,
J. M.
, 2009, “
Investigating the Effect of Solid Boundaries on the Gas Molecular Mean-Free-Path
,”
ASMEICNMM2009-82080
,
Pohang
,
South Korea
.
16.
Einstein
,
A.
, 1956,
Investigations on the Theory of Brownian Movement
,
Dover
,
New York
.
17.
del Castillo-Negrete
,
D.
,
Carreras
,
B. A.
, and
Lynch
,
V. E.
, 2005, “
Nondiffusive Transport in Plasma Turbulence: A Fractional Diffusion Approach
,”
Phys. Rev. Lett.
,
94
, p.
065003
.
18.
Scharfe
,
M. E.
, 1970, “
Transient Photoconductivity in Vitreous as2se3
,”
Phys. Rev. B
,
2
, pp.
5052
5034
.
19.
Benisti
,
D.
, and
Escande
,
D. F.
, 1998, “
Nonstandard Diffusion Properties of the Standard Map
,”
Phys. Rev. Lett.
,
80
, pp.
4871
4874
.
20.
Montroll
,
E. W.
, and
Scher
,
H.
, 1973, “
Random Walks on Lattices. IV. Continuous-Time Walks and Influence of Absorbing Boundaries
,”
J. Stat. Phys.
,
9
, pp.
101
135
.
21.
Cercignani
,
C.
, 1990,
Mathematical Methods in Kinetic Theory
,
Plenum
,
New York
.
22.
Grolimund
,
D.
,
Borkovec
,
M.
,
Federer
,
P.
, and
Sticher
,
H.
, 1995, “
Measurement of Sorption Isotherms With Flow-Through Reactors
,”
Crit. Rev. Environ. Sci. Technol.
,
29
, pp.
2317
2321
.
23.
Fichman
,
M.
, and
Hetsroni
,
G.
, 2005, “
Viscosity and Slip Velocity in Gas Flow in Microchannels
,”
Phys. Fluids
,
17
, p.
123102
.
24.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 1960,
Transport Phenomena
,
John Wiley and Sons
,
New York
.
25.
Cercignani
,
C.
, 1988,
The Boltzmann Equation and its Applications
,
Springer
,
New York
.
26.
Dongari
,
N.
,
Agrawal
,
A.
, and
Agrawal
,
A.
, 2007, “
Analytical Solution of Gaseous Slip Flow in Long Microchannels
,”
Int. J. Heat Mass Transfer
,
50
, pp.
3411
3421
.
27.
Reese
,
J. M.
, and
Zhang
,
Y. H.
, 2009, “
Simulating Fluid Flows in Micro and Nano Devices: The Challenge of Non-equilibrium Behaviour
,”
J. Comput. Theor. Nanosci.
,
14
, pp.
2061
2074
.
28.
Deissler
,
R. G.
, 1964, “
An Analysis of Second-Order Slip Flow and Temperature Jump Boundary Conditions for Rarefied Gases
,”
Int. J. Heat Mass Transfer
,
7
, pp.
681
694
.
29.
Cercignani
,
C.
, 1964, “
Higher Order Slip According to the Linearized Boltzmann Equation
,”
Institute of Engineering Research Report AS-64-19
,
University of California
,
Berkeley
.
30.
Hadjiconstantinou
,
N. G.
, 2003, “
Comment on Cercignani’s Second-Order Slip Coefficient
,”
Phys. Fluids
,
15
, pp.
2352
2355
.
31.
Ohwada
,
T.
,
Sone
,
Y.
, and
Aoki
,
K.
, 1989, “
Numerical Analysis of the Poiseuille and Thermal Transpiration Flows Between Parallel Plates on the Basis of the Boltzmann Equation for Hard-Sphere Molecules
,”
Phys. Fluids A
,
1
, pp.
2042
2049
.
32.
Gu
,
X.-J.
, and
Emerson
,
D. R.
, 2009, “
A High-Order Moment Approach for Capturing Non-equilibrium Phenomena in the Transition Regime
,”
J. Fluid Mech.
,
636
, pp.
177
226
.
33.
Ewart
,
T.
,
Perrier
,
P.
,
Graur
,
I. A.
, and
Meolans
,
J. B.
, 2007, “
Mass Flow Rate Measurements in a Microchannel, From Hydrodynamic to Near Free Molecular Regimes
,”
J. Fluid Mech.
,
584
, pp.
337
356
.
34.
Loyalka
,
S. K.
, 1975, “
Kinetic Theory of Thermal Transpiration and Mechanocaloric Effects
,”
J. Chem. Phys.
,
63
, pp.
4054
4560
.
35.
Hadjiconstantinou
,
N. G.
, 2006, “
The Limits of Navier-Stokes Theory and Kinetic Extensions for Describing Small Scale Gaseous Hydrodynamics
,”
Phys. Fluids
,
18
, p.
111301
.
36.
Reynolds
,
O.
, 1880, “
On Certain Dimensional Properties of Matter in the Gaseous State
,”
Philosophical Transactions of the Royal Society Series B
,
170
, pp.
727
845
.
37.
Dongari
,
N.
,
Zhang
,
Y. H.
, and
Reese
,
J. M.
, 2010, “
Power-Law Free Path Distribution Function for Thermal Transpiration
,”
Proceedings of the 2nd GASMEMS Workshop
,
Les Embiez
,
France
, GASMEMS2010-DY06.
38.
Sharipov
,
F.
, and
Bertoldo
,
G.
, 2009, “
Poiseuille Flow and Thermal Creep Based on the Boltzmann Equation With the Lennard-Jones Potential Over a Wide Range of the Knudsen Number
,”
Phys. Fluids
,
21
, p.
067101
.
You do not currently have access to this content.