The present state-of-the-art ocean models use an eddy viscosity that depends on structure parameter (Cμ). In this paper we use a Reynolds stress anisotropy based formulation for the eddy viscosity because in addition to the value of turbulent kinetic energy, it also depends on the degree of anisotropy. The formulation is incorporated into the General Ocean Turbulence Model (GOTM) and simulated using the famous test case of Ocean Weather Station (OWS) Papa experiment. Even if there is not much of an improvement in terms of results with this model, it can be very easily incorporated into the ocean models removing cumbersome equations for structure parameters.
Issue Section:
Technical Briefs
References
1.
Boussinesq
, J.
, 1877, “Théorie de l’Écoulement Tourbillant
,” Mem. Présentés par Divers Savants Acad. Sci. Inst. Fr.
, 23
, pp. 46
–50
.2.
Prandtl
, L.
, 1925, “Bericht ueber Unterscchungen zur Aausgebileten Turbulenz
,” Zeitschrift fur Angewandte Mathematik und Mechanik
, 3
, pp. 136
–139
.3.
Cebecci
, T.
, and Smith
, A. M. O.
, 1974, Analysis of Turbulent Boundary Layers, Series in Applied Math and Mechanics, XV, Academic
, Orlando
, Florida
.4.
Launder
, B. E.
, and Spalding
, D. B.
, 1973, “The Numerical Computation of Turbulent Flows
,” Comput. Methods Appl. Mech. Eng.
, 3
(2
), pp. 269
–289
.5.
Kolmogorov
, A. N.
, 1942, “Equations of Turbulent Motion of an Incompressible Fluid
,” Izvestiya Akademii Nauk, Seriya Fizicheskaya
, VI
(1–2
), pp. 56
–58
.6.
Prandtl
, L.
, 1945, “Uber ein Neues Formelsystem fur die Aausgebildete Turbulenz
,” Nachrichten der Akademie der Wissenschaften in Goettingen. I. Mathematisch-Physikalische Klasse
, pp. 6
–19
.7.
Mellor
, G. L.
, and Yamada
, T.
, 1982, “Development of a Turbulence Closure Model for Geophysical Fluid Problems
,” Rev. Geophys. Space Phys.
, 20
(4
), pp. 851
–875
.8.
Kantha
, L. H.
, and Clayson
, C. A.
, 1994, “An Improved Mixed Layer Model for Geophysical Applications
,” J. Geophys. Res.
, 99
, pp. 25,235
–25,266
.9.
Canuto
, V. M.
, Cheng
, Y.
, and Howard
, A. M.
, 2001, “New Third Order Moments for the Convective Boundary Layer
,” J. Atmos. Sci.
, 58
, pp. 1169
–1172
.10.
Abarbanel
, H. D. I.
, Holm
, D. D.
, Marsden
, J. E.
, and Ratiu
, T.
, 1984, “Richardson Number Criterion for the Nonlinear Stability of Three-Dimensional Stratified Flow
,” Phys. Rev. Lett.
, 52
(26
), pp. 2352
–2355
.11.
Jovanovic
, J.
, and Otic
, I.
, 2000, “On the Constitutive Relation for the Reynolds Stresses and the Prandtl-Kolmogorov Hypothesis of Effective Viscosity in Axisymmetric Strained Turbulence
,” J. Fluids Eng.
, 122
, pp. 48
–50
.12.
Craft
, T. J.
, Launder
, B. E.
, and Suga
, K.
, 1997, “Prediction of Turbulent Transitional Phenomena with a Non-linear Eddy Viscosity Model
,” Int. J. Heat Fluid Flow
, 18
(1
), pp. 15
–28
.13.
Lumley
, J. L.
, 1978, “Computational Modeling of Turbulent Flows
,” Adv. Appl. Mech.
, 18
, pp. 123
–175
.14.
Burchard
, H.
, Bolding
, K.
, and Villarreal
, M. R.
, 1999, “GOTM-A General Ocean Tubulence Model, Theory, Implementation and Test cases
,” Technical Report EUR 18745 EN, European Commission
, 3 pp.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.