The present state-of-the-art ocean models use an eddy viscosity that depends on structure parameter (Cμ). In this paper we use a Reynolds stress anisotropy based formulation for the eddy viscosity because in addition to the value of turbulent kinetic energy, it also depends on the degree of anisotropy. The formulation is incorporated into the General Ocean Turbulence Model (GOTM) and simulated using the famous test case of Ocean Weather Station (OWS) Papa experiment. Even if there is not much of an improvement in terms of results with this model, it can be very easily incorporated into the ocean models removing cumbersome equations for structure parameters.

References

1.
Boussinesq
,
J.
, 1877, “
Théorie de l’Écoulement Tourbillant
,”
Mem. Présentés par Divers Savants Acad. Sci. Inst. Fr.
,
23
, pp.
46
50
.
2.
Prandtl
,
L.
, 1925, “
Bericht ueber Unterscchungen zur Aausgebileten Turbulenz
,”
Zeitschrift fur Angewandte Mathematik und Mechanik
,
3
, pp.
136
139
.
3.
Cebecci
,
T.
, and
Smith
,
A. M. O.
, 1974,
Analysis of Turbulent Boundary Layers, Series in Applied Math and Mechanics, XV, Academic
,
Orlando
,
Florida
.
4.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1973, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
5.
Kolmogorov
,
A. N.
, 1942, “
Equations of Turbulent Motion of an Incompressible Fluid
,”
Izvestiya Akademii Nauk, Seriya Fizicheskaya
,
VI
(
1–2
), pp.
56
58
.
6.
Prandtl
,
L.
, 1945, “
Uber ein Neues Formelsystem fur die Aausgebildete Turbulenz
,”
Nachrichten der Akademie der Wissenschaften in Goettingen. I. Mathematisch-Physikalische Klasse
, pp.
6
19
.
7.
Mellor
,
G. L.
, and
Yamada
,
T.
, 1982, “
Development of a Turbulence Closure Model for Geophysical Fluid Problems
,”
Rev. Geophys. Space Phys.
,
20
(
4
), pp.
851
875
.
8.
Kantha
,
L. H.
, and
Clayson
,
C. A.
, 1994,
“An Improved Mixed Layer Model for Geophysical Applications
,”
J. Geophys. Res.
,
99
, pp.
25,235
25,266
.
9.
Canuto
,
V. M.
,
Cheng
,
Y.
, and
Howard
,
A. M.
, 2001,
“New Third Order Moments for the Convective Boundary Layer
,”
J. Atmos. Sci.
,
58
, pp.
1169
1172
.
10.
Abarbanel
,
H. D. I.
,
Holm
,
D. D.
,
Marsden
,
J. E.
, and
Ratiu
,
T.
, 1984, “
Richardson Number Criterion for the Nonlinear Stability of Three-Dimensional Stratified Flow
,”
Phys. Rev. Lett.
,
52
(
26
), pp.
2352
2355
.
11.
Jovanovic
,
J.
, and
Otic
,
I.
, 2000,
“On the Constitutive Relation for the Reynolds Stresses and the Prandtl-Kolmogorov Hypothesis of Effective Viscosity in Axisymmetric Strained Turbulence
,”
J. Fluids Eng.
,
122
, pp.
48
50
.
12.
Craft
,
T. J.
,
Launder
,
B. E.
, and
Suga
,
K.
, 1997,
“Prediction of Turbulent Transitional Phenomena with a Non-linear Eddy Viscosity Model
,”
Int. J. Heat Fluid Flow
,
18
(
1
), pp.
15
28
.
13.
Lumley
,
J. L.
, 1978, “
Computational Modeling of Turbulent Flows
,”
Adv. Appl. Mech.
,
18
, pp.
123
175
.
14.
Burchard
,
H.
,
Bolding
,
K.
, and
Villarreal
,
M. R.
, 1999, “
GOTM-A General Ocean Tubulence Model, Theory, Implementation and Test cases
,”
Technical Report EUR 18745 EN, European Commission
, 3 pp.
You do not currently have access to this content.