Scalar, eddy viscosity models are widely used for predicting engineering turbulent flows. System rotation, or streamline curvature, can enhance or reduce the intensity of turbulence. Methods to incorporate the effects of rotation and streamline curvature consist of introducing parametric variation of model coefficients, such that either the growth rate of turbulent energy is altered; or such that the equilibrium solution bifurcates from healthy to decaying solution branches. For general use, parameters must be developed in coordinate invariant forms. Effects of rotation and of curvature can be unified by introducing the convective derivative of the rate of strain eigenvectors as their measure.

References

References
1.
Rodi
,
W.
, and
Scheurer
,
G.
, 1983,
“Calculation of Curved Shear Layers With Two-Equation Turbulence Models,”
Phys. Fluids
,
26
, pp.
1422
1436
.
2.
Launder
,
B. E.
,
Priddin
,
C. H.
, and
Sharma
,
B. I.
, 1977,
“The Calculation of Turbulent Boundary Layers on Spinning and Curved Surfaces,”
ASME Trans. J. Fluids Eng.
,
99
, p.
231
.
3.
Durbin
,
P.
, and
Pettersson Reif
,
B.
, 2010,
Statistical Theory and Modeling for Turbulent Flows
,
2nd ed.
,
John Wiley and Sons
,
New York
.
4.
Brethouwer
,
G.
, 2005,
“The Effect of Rotation on Rapidly Sheared Homogeneous Turbulence and Passive Scalar Transport: Linear Theory and Direct Numerical Simulation,”
J. Fluid Mech.
,
542
, pp.
305
342
.
5.
Kristoffersen
,
R.
, and
Andersson
,
H. I.
, 1993,
“Direct Simulations of Low-Reynolds-Number Turbulent Flow in a Rotating Channel,”
J. Fluid Mech.
,
256
, pp.
163
197
.
6.
Lamballais
,
E.
,
Metais
,
O.
, and
Lesieur
,
M.
, 1998,
“Spectral-Dynamic Model for Large-Eddy Simulations of Turbulent Rotating Channel Flow,”
Theor. Comput. Fluid Dyn.
,
12
, pp.
149
177
.
7.
Grundestam
,
O.
,
Wallin
,
S.
, and
Johansson
,
A. V.
, 2008,
“Direct Numerical Simulations of Rotating Turbulent Channel Flow,”
J. Fluid Mech.
,
598
, pp.
177
199
.
8.
Iacovides
,
H.
,
Launder
,
B. E.
, and
Li
,
H. Y.
, 1996,
“The Computation of Flow Development Through Stationary and Rotating U-Ducts of Strong Curvature,”
Int. J. Heat Fluid Flow
,
17
, pp.
22
33
.
9.
Witt
,
H. T.
, and
Joubert
,
P. N.
, 1985,
“Effect of Rotation on a Turbulent Wake,”
Turbulent Shear Flows V
,
Springer-Verlag
,
Berlin
, pp.
21
25
.
10.
Johnston
,
J. P.
, 1998,
“Effects of System Rotation on Turbulence Structure: A Review Relevant to Turbomachinery Flows,”
Int. J. Rotating Mach.
,
4
, pp.
97
112
.
11.
Barri
,
M.
,
Khoury
,
G. K. E.
,
Andersson
,
H. I.
, and
Pettersen
,
B.
, 2009,
“Massive Separation in Totating Turbulent Flows,”
Advances in Turbulence XII
,
B.
Eckhardt
, ed., Vol.
132
,
Springer
,
Berlin
, pp.
625
628
.
12.
Laskowski
,
G. M.
, and
Durbin
,
P. A.
, 2007,
“Direct Numerical Simulations of Turbulent Flow Through a Stationary and Rotating Infinite Serpentine Passage,”
Phys. Fluids
,
19
, pp.
1
14
.
13.
Andersson
,
H. I.
, 2010,
“Effect of System Rotation on Free Shear Flows,”
Effect of System on Turbulence With Application to Turbomachinery
,
Von Karman Institute, Belgium, LS
2010–08.
14.
Speziale
,
C. G.
, and
MacGiollaMhuiris
,
N.
, 1989,
“On the Prediction of Equilibrium States in Homogeneous Turbulence,”
J. Fluid Mech.
,
209
, pp.
591
615
.
15.
Piomelli
,
U.
, 1999,
“Large-Eddy Simulation: Achievements and Challenges,”
Prog. Aerosp. Sci.
,
35
, pp.
335
362
.
16.
Gatski
,
T. B.
, and
Jongen
,
T.
, 2000,
“Nonlinear Eddy Viscosity and Algebraic Stress Models for Solving Complex Turbulent Flows,”
Prog. Aerosp. Sci.
,
36
, pp.
655
682
.
17.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
, 1991,
“Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach,”
J. Fluid Mech.
,
227
, pp.
245
272
.
18.
Bradshaw
,
P.
, 1973,
“Effects of Streamline curvature on Turbulent Flow,”
AGARDograph
,
169
.
19.
Hellsten
,
A.
, 1998,
“Some Improvements in Menter’s k-ω SST Turbulence Model,”
AIAA Paper No. 98-2554.
20.
Cazalbou
,
J.
,
Chassaing
,
P.
,
Dufour
,
G.
, and
Carbonneau
,
X.
, 2005,
“Two-Equation Modeling of Turbulent Rotating Flows,”
Phys. Fluids
,
17
, pp.
1
14
.
21.
Howard
,
J.
Patankar
,
S.
and
Bordynuik
,
R.
, 1980.
“Flow Prediction in Rotating Ducts Using Coriolis-Modified Turbulence Models,”
J. Fluids Eng.
,
102
, pp.
456
461
.
22.
Pettersson-Reif
,
B. A.
,
Durbin
,
P. A.
, and
Ooi
,
A.
, 1999.
“Modeling Rotational Effects in Eddy-Viscosity Closures,”
Int. J. Heat Fluid Flow
,
20
, pp.
563
573
.
23.
Park
,
J. Y.
, and
Chung
,
M. K.
, 1999,
“A Model for the Decay of Rotating Homogeneous Turbulence,”
Phys. Fluids
,
11
, pp.
1544
1549
.
24.
Thiele
,
M.
, and
Müller
,
W.-C.
, 2009,
“Structure and Decay of Rotating Homogeneous Turbulence,”
J. Fluid Mech.
,
637
, pp.
425
442
.
25.
Spalart
,
P. R.
, and
Shur
,
M. L.
, 1997,
“On the Sensitization of Turbulence Models to Rotation and Curvature,”
Aerosp. Sci. Technol.
,
1
, pp.
297
302
.
26.
Shur
,
M. L.
,
Strelets
,
M. K.
,
Travin
,
A. K.
, and
Spalart
,
P. R.
, 2000,
“Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction,”
AIAA J.
,
38
, pp.
784
792
.
27.
Khodak
,
A.
, and
Hirsch
,
C.
, 1996,
“Second Order Nonlinear Models With Explicit Effect of Curvature and Rotation,”
Proceedings of the Third ECCO- MAS Computational Fluid Dynamics Conference
.
28.
Dhakal
,
T. P.
, and
Walters
,
K. D.
, 2011,
“A Three-Equation Variant of the k-ω Model Sensitized to Rotation and Curvature Effects,”
J. Fluids Eng.
, submitted.
29.
Duraisamy
,
K.
, and
Iaccarino
,
G.
, 2005,
“Curvature Correction and Application of the v2-f Turbulence Model to Tip Vortex Flows,”
Annual Research Briefs
,
Center for Turbulence Research, Stanford University
.
30.
Durbin
,
P.
, and
Pettersson Reif
,
B.
, 1999,
“On Algebraic Second Moment Models,”
Flow, Turbul. Combust.
,
63
, pp.
23
37
.
31.
Girimaji
,
S.
, 1997,
“A Galilean Invariant Explicit Algebraic Reynolds Stress Model for Turbulent Curved Flows,”
Phys. Fluids
,
9
, pp.
1067
1077
.
32.
Hellsten
,
A.
, 2002,
“Curvature Corrections for Algebraic Reynolds Stress Modeling: A Discussion,”
AIAA J.
,
40
, pp.
1090
1911
.
33.
Wallin
,
S.
, and
Johansson
,
A.
, 2002,
“Modelling Streamline Curvature Effects in Explicit Algebraic Reynolds Stress Turbulence Models,”
Int. J. Heat Fluid Flow
,
23
, pp.
721
730
.
You do not currently have access to this content.