High-power electronic systems often require temperature uniformity for optimal performance. While many advanced cooling systems, such as micro-channels, result in significant heat removal, they are also susceptible to flow mal-distribution that can impact the local temperature variation on a device. By examining the pressure drops through each flow path in a multi-channel cooling system, an analytical model is predicted for the optimal manifold shape to produce uniform velocities. This is a simple power law, whose exponent depends on the flow regime in the manifold passages. The model is validated for laminar fully developed conditions using a series of computational simulations. With the power law design, the speeds in a parallel channel design are uniformly distributed at low Reynolds numbers, with a standard deviation of less than 3% of the overall mean channel speed. At higher Reynolds numbers, some mal-distribution is observed due to developing flow conditions, but it is not as significant as with typical untapered designs.

References

References
1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heatsinking for VLSI
,”
IEEE Electronic Device Lett.
2
, pp.
126
129
.
2.
Solovitz
,
S. A.
,
Stevanovic
,
L. D.
, and
Beaupre
,
R. A.
, 2006, “
Micro-Channel Thermal Management of High Power Devices
,”
Proceedings of the 2006 Applied Power Electronics Conference
,
Dallas, Texas
, March 19–23, pp.
1
7
.
3.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
LaBianca
,
N.
,
Magerlein
,
J. H.
,
Polastre
,
R.
,
Bezama
,
R.
,
Marston
,
K.
, and
Schmidt
,
R.
, 2007, “
High Performance and Subambient Silicon Microchannel Cooling
,”
J. Heat Transfer
,
129
(
8
), pp.
1046
1051
.
4.
Wei
,
X. J.
,
Joshi
,
Y. K.
, and
Ligrani
,
P. M.
, 2007, “
Numerical Simulation of Laminar Flow and Heat Transfer Inside a Microchannel with One Dimpled Surface
,”
J. Electron. Packag.
129
(
1
), pp.
63
70
.
5.
Lee
,
J.
, and
Mudawar
,
I.
, 2005, “
Two-Phase Flow in High-Heat-Flux Micro-channel Heat Sink for Refrigeration Cooling Applications: Part II – Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
48
(
5
), pp.
941
955
.
6.
Kandlikar
,
S. G.
, 2005, “
High Flux Heat Removal with Microchannels—A Roadmap of Challenges and Opportunities
,”
Heat Transfer Eng.
26
(
8
), pp.
5
14
.
7.
Webb
,
R. L.
, 2003, “
Effect of Manifold Design on Flow Distribution in Parallel Micro-Channels
,”
Proceedings of the (2003) InterPACK Conference
,
Maui
,
Hawaii
, July 6–11, pp.
527
535
.
8.
Bajura
,
R. A.
, and
Jones
,
E. H.
, 1976, “
Flow Distribution Manifolds
,”
J. Fluids Eng.
98
(
4
), pp.
654
665
.
9.
Datta
,
A. B.
, and
Majumdar
,
A. K.
, 1980, “
Flow Distribution in Parallel and Reverse Flow Manifolds
,”
Int. J. Heat Fluid Flow
,
2
(
4
), pp.
253
262
.
10.
Shah
,
R. K.
, 1985,
Handbook of Heat Transfer Applications
,
W. M.
Rohsenow
,
J. P.
Hartnett
, and
E. N.
Ganic
, eds.,
McGraw-Hill
,
New York
, Chap. 4, pp.
266
279
.
11.
Murray
,
C. D.
, 1926, “
The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume
,”
Proc. Natl. Acad. Sci. U.S.A.
,
12
(
3
), pp.
207
214
.
12.
Vogel
,
S.
, 1994,
Life in Moving Fluids
,
Princeton University Press
,
Princeton
, pp.
317
321
.
13.
Emerson
,
D. R.
,
Cieslicki
,
K.
,
Gu
,
X.
, and
Barber
,
R. W.
, 2006, “
Biomimetic Design of Microfluidic Manifolds Based on a Generalized Murray’s Law
,”
Lab Chip
,
6
(
3
), pp.
447
454
.
14.
Barber
,
R. W.
, and
Emerson
,
D. R.
, 2008, “
Optimal Design of Microfluidic Networks Using Biologically Inspired Principles
,”
Microfluidic Nanofluid.
4
(
3
), pp.
179
191
.
15.
Bejan
,
A.
, and
Lorente
,
S.
, 2006, “
Constructal Theory of Generation of Configuration in Nature and Engineering
,”
J. Appl. Phys.
100
, 041301, pp.
1
27
.
16.
Liu
,
S.
,
Zhang
,
Y.
, and
Liu
,
P.
, 2007, “
Heat Transfer and Pressure Drop in Fractal MicrochannelHeat Sink for Cooling of Electronic Chips
,”
Int. J. Heat Mass Transfer
,
44
(
2
), pp.
221
227
.
17.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
, 1994,
Fundamentals of Fluid Mechanics
,
2nd ed.
,
Wiley
,
New York
, pp.
492
506
.
18.
Shah
,
R. K.
, and
London
,
A. L.
, 1978, “
Laminar Flow Forced Convection in Ducts,” Advances in Heat Transfer, Supplement
,
Academic
,
New York
, Vol
1
, p.
86
.
19.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1990,
Introduction to Heat Transfer
,
2nd ed.
,
Wiley
,
New York
, pp.
428
434
.
20.
Stevanovic
,
L. D.
,
Pautsch
,
A.
,
Beaupre
,
R. A.
,
Gowda
,
A.
, and
Solovitz
,
S. A.
, 2010, “
Integral Micro-Channel Liquid Cooling for Power Electronics
,”
Proceedings of the (2010) Applied Power Electronics Conference
Palm Springs
,
CA
, February 21–25, pp.
1
7
.
21.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing
,
Washington, D.C.
, pp.
126
131
.
22.
White
,
F. M.
, 1991,
Viscous Fluid Flow
,
2nd ed.
,
McGraw-Hill
,
New York
, pp.
291
293
.
You do not currently have access to this content.