A numerical model for ion-drag electrohydrodynamic (EHD) micropumps has been developed. The Poisson and charge conservation equations are solved to determine the electric body force within the flow domain. The charge distribution at the electrodes is assumed to depend on the magnitude and the gradient of the electric field at the surface of the electrode. The flow field is then determined by solving the momentum equation with the inclusion of the electric body force. Simulations were performed for micropump configurations that consisted of a series of planar electrode pairs embedded along the bottom wall of a microchannel. A two-dimensional segment of the channel with a single electrode pair is simulated using periodic boundary conditions at the inlet and outlet for the charge and electric fields. An empirical model was developed to estimate the charge boundary condition for the simulations. The simulation results were in good agreement with existing experimental data. The model was then used to perform a parametric study of the effect of channel height on the pump performance.

References

1.
Nguyen
,
N.T.
, and
Wu
,
Z.
,
“Micromixers—A Review,”
J. Micromech. Microeng.
15
, pp.
R1
R16
(2005).
2.
Becker
,
H.
, and
Manz
,
A.
,
Microsystem Technology in Chemistry and Life Science (Topics in Current Chemistry)
, (
Springer
,
Berlin
, 1997).
3.
Wolley
,
A. T.
,
Hadley
,
D.
,
Landre
,
P.
,
DeMello
,
A. J.
,
Mathies
,
R. A.
, and
Northrup
,
M.A.
,
“Functional Integration of PCR Amplification and Capillary Electrophoresis in a Microfabricated DNA Analysis Device,”
Analytical Chemistry
,
68
, pp.
4081
4086
(1996).
4.
Laser
,
D. J.
, and
Santiago
,
J. G.
,
“A Review of Micropumps,”
J. Micromech. Microeng.
14
, pp.
R35
R64
(2005).
5.
Garimella
,
S. V.
, and
Iverson
,
B. D.
,
“Recent Advances in Microscale Pumping Technologies: A Review and Evaluation,”
Microfluid. Nanofluid.
5
, pp.
145
174
(2008).
6.
Gerlach
,
W.
, and
Hermlut
,
W.
,
“Working Principle and Performance of the Dynamic Micropump,”
Sens. Actuators, A
,
150
, pp.
135
140
(1995).
7.
Yun
,
K. S.
,
Cho
,
I. J.
,
Chang-Jin
,
K.
, and
Yoon
,
E.
,
“A Surface-Tension Driven Micropump for Low-Voltage and Low-Power Operations,”
J. Microelectromech. Syst.
,
11
, pp.
454
461
(2002).
8.
Rapp
,
R.
,
Schomburg
,
W. K.
,
Maas
,
D.
,
Schulz
,
J.
, and
Stark
,
W.
,
“LIGA Micropump for Liquid and Gases,”
Sens. Actuators, A
,
40
, pp.
57
61
(1994).
9.
Tay
,
F. E. H.
,
Microfluidics and BioMEMS Applications
(
Kluwer Academic
,
Dordrecht, The Netherlands
, 2002).
10.
Stuetzer
,
O. M.
,
“Ion Drag Pressure Generation,”
J. Appl. Phys.
,
30
, pp.
984
994
(1959).
11.
Pionteck
,
J.
, and
Wypych
,
G.
,
Handbook of Antistatics
(
ChemTec
,
Toronto, ON, Canada
, 2006).
12.
Kazemi
,
P. Z.
,
Selvaganapathy
,
P. R.
, and
Ching
,
C.Y.
,
“Effect of Electrode Asymmetry on Performance of Electrohydrodynamic Micropumps,”
J. Microelectromech. Syst.
,
18
, pp.
547
554
(2009).
13.
Yang
,
L. J.
,
Wang
,
J. M.
, and
Huang
,
Y.L.
,
“The Micro Ion Drag Pump using Indium-Tin-Oxide (ITO) Electrodes to Resist Aging,”
Sens. Actuators A
,
111
, pp.
118
122
(2004).
14.
Darabi
,
J.
, and
Wang
,
H.
,
“Development of an Electrohydrodynamic Injection Micropump and its Potential Application in Pumping Fluids in Cryogenic Cooling Systems,”
J. Microelectromech. Syst.
14
, pp.
747
755
(2005).
15.
Darabi
,
J.
,
Rada
,
M.
,
Ohadi
,
M.
, and
Lawler
,
J.
,
“Design, Fabrication and Testing of an Electrohydrodynamic Ion-Drag Micropump,”
J. Microelectromech. Syst.
11
, pp.
684
690
(2002).
16.
Benetis
,
V.
,
Shooshtari
,
A.
,
Foroughi
,
P.
, and
Ohadi
,
M.
, “
A Source-Integrated Micropump for Cooling of High Heat Flux Electronics
,” in Semiconductor Thermal Measurement and Management Symposium, pp.
236
241
(2003).
17.
Kano
,
I.
, and
Takhashi
,
I.
,
“Improvement of Pressure Performance of Micro-EHD Pump with an Arrangement of Thin Cylindrical Electrodes,”
JSME International Journal Series B
,
49
, pp.
748
755
(2006).
18.
Bryan
,
J. E.
, and
Seyed-Yagoobi
,
J.
,
“Experimental Study of Ion-Drag Pumping Using Various Working Fluids,”
IEEE Trans. Electr. Insul.
,
26
, pp.
647
655
(1991).
19.
Chang
,
J. S.
,
Tsubone
,
H.
,
Chun
,
Y.
,
Berezin
,
A. A.
, and
Urashima
,
K.
,
“Mechanism of Electrohydrodynamically Induced Flow in a Wire-Non-Parallel Plate Electrode Type Gas Pump,”
J. Electrost.
,
67
, pp.
335
339
(2009).
20.
Pasechnik
,
L. P.
, and
Ufatov
,
I. V.
,
“Investigation of EHD Flow Based on a Numerical Solution of the Navier-Stokes Equations,”
J. Eng. Phys. Thermophys.
56
, pp.
148
152
(1989).
21.
Lastow
,
O.
, and
Balachandran
,
W.
,
“Numerical Simulation of Electrohydrodynamic (EHD) atomization,”
J. Electrost.
,
64
, pp.
850
859
(2006).
22.
Darabi
,
J.
, and
Rhodes
,
C.
,
“CFD Modeling of an Ion-Drag Micropump,”
Sens. Actuators, A
,
127
, pp.
94
103
(2006).
23.
Benetis
,
V.
, “
Experimental and Computational Investigation of Planar Ion Drag Micropump Geometrical Design Parameters
,” Ph.D. thesis, University of Maryland, College Park (2005).
24.
Lee
,
C. K
,
Robinson
,
A. J.
, and
Ching
,
C.Y.
, “
Development of EHD Ion-Drag Micropump for Microscale Electronics Cooling
,” 13th Workshop on Thermal Issues in ICs and Systems, Budapest, pp.
48
53
(2007).
25.
Zhao
,
L.
, and
Adamiak
,
K.
,
“EHD Flow in Air Produced by Electric Corona Discharge in Pin–Plate Configuration,”
J. Electrost.
,
63
, pp.
337
350
(2005).
26.
Yamamoto
,
T.
, and
Sparks
,
L. E.
,
“Numerical Simulation of Three-Dimensional Tuft Corona and Electrohydrodynamics,”
IEEE Trans. Industry Applications
,
IA-22
, pp.
880
885
(1986).
27.
Stratton
,
J. A.
,
Electromagnetic Theory
,
McGraw Hill
(
New York, N. Y.
, 1941
).
28.
Castellanos
,
A.
, and
Gonzalez
,
A.
,
“Nonlinear Electrohydrodynamics of Free Surfaces
,”
IEEE Trans. Dielectrics and Electrical Insulation
,
5
, pp.
334
343
(1998).
You do not currently have access to this content.