Flow past a rotating circular cylinder is studied experimentally. The experiments are carried out in a water tunnel at Reynolds numbers of 200, 300, and 400 and nondimensional rotation rates (ratio of surface speed of the cylinder to the free stream velocity), α, varying from 0 to 5. The diagnostic is done by flow visualization using hydrogen bubble technique and quantitative measurements using a particle image velocimetry technique. We present the global view of the wake structure at the three Reynolds numbers and various rotation rates. Vortex shedding activity is observed to occur from α=0 to α~1.95, after which it is suppressed. Reynolds number is found to have a strong effect on the wake morphology near the suppression rotation rate, α=1.95. Interestingly, the vortex shedding activity again resumes in the range 4.34<α<4.70 as first discovered numerically (Mittal and Kumar, 2003, “Flow past a rotating cylinder,” J. Fluid Mech., 476, 303) for Re = 200. The shed vortices are of one sign in this range of rotation rates. Experimental evidence of this new vortex shedding mode is presented, for the first time, at α=4.45 in the newly discovered window of rotation rates, using flow visualization and particle image velocimetry measurements. Strouhal number measurements and global wake patterns agree well with the computations of Mittal and Kumar at a Reynolds number of 200.

References

References
1.
Williamson
,
C. H. K.
, 1996,
“Vortex Dynamics in the Cylinder Wake,”
Annu. Rev. Fluid Mech.
,
28
, pp.
477
539
.
2.
Prandtl
,
L.
, 1925,
“The Magnus Effect and Wind Powered Ships,”
Die Naturwissenschaften
,
13
, pp.
93
108
Prandtl
,
L.
, [
NACA Tech. Mem.
387
(1926)].
3.
Taneda
,
S.
, 1977,
“Visual Study of Unsteady Separated Flows Around Bodies,”
Prog. Aerospace Sci.
,
17
, pp.
287
348
.
4.
Fransson
,
J. H. M.
, 2003,
“Flow Control of Boundary Layers and Wakes,”
Technical Reports from Royal Institute of Technology
, pp.
1
59
(KTH Mechanics, Stockholm).
5.
Ausoni
,
P.
,
Farhat
,
M.
,
Escaler
,
X.
,
Egusquiza
,
E.
, and
Avellan
,
F.
, 2007,
“Cavitation Influence on von Kármán Vortex Shedding and Induced Hydrofoil Vibrations,”
ASME J. Fluids Eng
.,
129
(
8
), pp.
966
973
.
6.
Kumar
,
S.
,
Laughlin
,
G.
, and
Cantu
,
C.
, 2009,
“Near-Wake Structure Behind Two Circular Cylinders in a Side-by-Side Configuration with Heat Release,”
Phys. Rev. E
,
80
, p.
066307
.
7.
Diaz
,
F.
,
Gavaldà
,
J.
,
Kawall
,
J. G.
,
Keffer
,
J. G.
, and
Giralt
,
F.
, 1983,
“Vortex Shedding From a Spinning Cylinder,”
Phys. Fluids
,
12
, pp.
3454
3460
.
8.
Diaz
,
F.
,
Gavaldà
,
J.
,
Kawall
,
J. G.
,
Keffer
,
J. G.
, and
Giralt
,
F.
, 1985,
“Asymmetrical Wake Generated by a Spinning Cylinder,”
AIAA J.
,
23
(
1
), pp.
49
54
.
9.
Coutanceau
,
M.
, and
Ménard
,
C.
, 1985,
“Influence of Rotation on the Near Wake Development Behind an Impulsively Started Circular Cylinder,”
J. Fluid Mech.
,
158
, pp.
399
446
.
10.
Badr
,
H. M.
, and
Dennis
,
S. C. R.
, 1985,
“Time-Dependent Viscous Flow Past an Impulsively Started Rotating and Translating Circular Cylinder,”
J. Fluid Mech.
,
158
, pp.
447
488
.
11.
Badr
,
H. M.
,
Coutanceau
,
M.
,
Dennis
,
S. C. R
, and
Ménard
,
C.
, 1990,
“Unsteady Flow Past a Rotating Circular Cylinder at Reynolds Numbers 103 and 104,”
J. Fluid Mech.
,
220
, pp.
459
484
.
12.
Tokumaru
,
P. T.
, and
Dimotakis
,
P. E.
, 1991,
“Rotary Oscillation Control of a Cylinder Wake,”
J. Fluid Mech.
,
224
, pp.
77
90
.
13.
Tokumaru
,
P. T.
, and
Dimotakis
,
P. E.
, 1993,
“The Lift of a Cylinder Executing Rotary Motions in a Uniform Flow,”
J. Fluid Mech.
,
255
, pp.
1
10
.
14.
Nazarinia
,
M.
,
Lo Jocono
,
D.
,
Thomson
,
M. C.
, and
Sheridan
,
J.
, 2009,
“The Three-Dimensional Wake of a Cylinder Undergoing a Combination of Translational and Rotational Oscillation in a Quiescent Fluid,”
Phys. Fluids
,
21
, p.
064101
.
15.
Kang
,
S.
,
Choi
,
H.
, and
Lee
,
S.
, 1999,
“Laminar Flow Past a Rrotating Circular Cylinder,”
Phys. Fluids
,
11
, pp.
3312
3321
.
16.
Kimura
,
T.
, and
Tsutahara
,
M.
, 1991, “
Wake of a Rotating Circular Cylinder
,”
AIAA J.
,
30
, pp.
555
556
.
17.
Chew
,
Y. T.
,
Cheng
,
M.
, and
Luo
,
S. C.
, 1995,
“A Numerical Study of Flow Past a Rotating Circular Cylinder Using a Hybrid Vortex Scheme,”
J. Fluid Mech.
,
299
, pp.
35
71
.
18.
Jaminet
,
J. F.
and
Van Atta
,
C. W.
, 1969,
“Experiments on Vortex Shedding From Rotating Circular Cylinders,”
AIAA J.
,
7
, pp.
1817
1819
.
19.
Hu
,
G.
,
Sun
,
D.
,
Yin
,
X.
, and
Tong
,
B.
, 1996,
“Hopf Bifurcation in Wakes Behind a Rotating and Translating Circular Cylinder,”
Phys. Fluids
,
8
, pp.
1972
1974
.
20.
Mittal
,
S.
and
Kumar
,
B.
, 2003,
“Flow Past a Rotating Cylinder,”
J. Fluid Mech.
,
476
, pp.
303
334
.
21.
Stojkovic
,
D.
, Breuer
,
M.
, and
Durst
,
F.
, 2002,
“Effect of High Rotation Rates on the Laminar Flow Around a Circular Cylinder,”
Phys. Fluids
,
14
(
9
), pp.
3160
3178
.
22.
Stojkovic
,
D.
, Schön
,
P.
,
Breuer
,
M.
, and
Durst
,
F.
, 2003,
“On the New Vortex Shedding Mode Past a Rotating Circular Cylinder,”
Phys. Fluids
,
15
(
5
), pp.
1257
1260
.
23.
Williamson
,
C. H. K.
,
“2-D and 3-D Aspects of the Wake of a Cylinder, and Their Relation to Wake Computations,”
Lectures in Applied Mathematics,
C. R.
Anderson
and
C.
Greengard
, eds., Vol.
28
, pp.
719
751
(
American Mathematical Society
,
Providence, RI
, 1991).
24.
Gerich
,
D.
and
Eckelmann
,
H.
, 1982,
“Influence of End Plates and Free Ends on the Shedding Frequency of Circular Cylinders.”
J. Fluid Mech.
,
122
, pp.
109
121
.
25.
Kumar
,
S.
,
Gonzalez
,
B.
, and
Probst
,
O.
, 2011,
“Flow Past Two Rotating Cylinders,”
Phys. Fluids
,
23
,
014102
.
26.
Mittal
,
S.
, 2004, “
Three-Dimensional Instabilities in Flow Past a Rotating Cylinder
,”
ASME. J. Appl. Mech.
,
71
, pp.
89
95
.
27.
El Akoury
,
R.
,
Braza
,
M.
Perrin
,
R.
Harran
,
G.
Hoarau
,
Y.
, 2008.
“The Three-Dimensional Transition in the Flow Around a Rotating Cylinder.”
J. Fluid Mech.
,
607
, pp.
1
11
.
You do not currently have access to this content.