In this paper, a bottom-up approach is used to construct random rough bottom walls for trapezoidal silicon microchannels with hydraulic diameters Dh from 47μm to 241μm. The top and side walls are set to be smooth. A computational fluid dynamics solver is used to solve the 3D Navier–Stokes equations for the water flow through the rough trapezoidal microchannels. No-slip and periodic boundary conditions are applied to achieve the fully developed flow characteristics. The effects of Reynolds number Re (75–600), relative roughness height H/Dh (1.66–5.39%), aspect ratio β (0.13–1), and base angle θ (30–90 deg) on the Poiseuille number Po are investigated. It is found that the roughness strongly affects the flow near the bottom wall but does not have significant effect on the center flow. The Po number in the developing flow region increases with the Re number and in the fully developed region tends to be independent of the Re number. The entrance length Le is found to be smaller than that in smooth channels because the roughness reduces hydraulic diameter Dh of the microchannel. It is also observed that with a certain H/Dh, the Po number has a larger deviation from the theoretical value with a smaller β, and with the same H/Dh and β, θ can also change the Po number, especially at small base angles.

1.
Husain
,
A.
, and
Kim
,
K. Y.
, 2009, “
Thermal Optimization of a Microchannel Heat Sink With Trapezoidal Cross Section
,”
ASME J. Electron. Packag.
1043-7398,
131
(
2
), p.
021005
.
2.
Flockhart
,
S. M.
, and
Dhariwal
,
R. S.
, 1998, “
Experimental and Numerical Investigation Into the Flow Characteristics of Channels Etched in (100) Silicon
,”
ASME J. Fluids Eng.
0098-2202,
120
(
2
), pp.
291
295
.
3.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
Friction Factors in Smooth Trapezoidal Silicon Microchannels With Different Ratios
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
14
), pp.
2519
2525
.
4.
Hao
,
P. F.
,
He
,
F.
, and
Zhu
,
K. Q.
, 2005, “
Flow Characteristics in a Trapezoidal Silicon Microchannel
,”
J. Micromech. Microeng.
0960-1317,
15
(
6
), pp.
1362
1368
.
5.
Sadasivam
,
R.
,
Manglik
,
R. M.
, and
Jog
,
M. A.
, 1999, “
Fully Developed Forced Convection Through Trapezoidal and Hexagonal Ducts
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
23
), pp.
4321
4331
.
6.
Qu
,
W.
,
Mala
,
G. M.
, and
Li
,
D.
, 2000, “
Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
43
(
3
), pp.
353
364
.
7.
Morini
,
G. L.
, 2004, “
Laminar Liquid Flow Through Silicon Microchannels
,”
ASME J. Fluids Eng.
0098-2202,
126
(
3
), pp.
485
489
.
8.
Bahrami
,
M.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
, 2006, “
Pressure Drop of Fully-Developed, Laminar Flow in Microchannels of Arbitrary Cross-Section
,”
ASME J. Fluids Eng.
0098-2202,
128
(
5
), pp.
1036
1044
.
9.
Muzychka
,
Y. S.
, and
Yovanovich
,
M. M.
, 2009, “
Pressure Drop in Laminar Developing Flow in Noncircular Ducts: A Scaling and Modeling Approach
,”
ASME J. Fluids Eng.
0098-2202,
131
(
11
), p.
111105
.
10.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
An Experiment Study of Convective Heat Transfer in Silicon Microchannels With Different Surface Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
14
), pp.
2547
2556
.
11.
Croce
,
G.
, and
D’Agaro
,
P.
, 2004, “
Numerical Analysis of Roughness Effect on Microtube Heat Transfer
,”
Superlattices Microstruct.
0749-6036,
35
(
3–6
), pp.
601
616
.
12.
Wang
,
X. Q.
,
Yap
,
C.
, and
Mujumdar
,
A. S.
, 2005, “
Effects of Two-Dimensional Roughness in Flow in Microchannel
,”
ASME J. Electron. Packag.
1043-7398,
127
(
3
), pp.
357
361
.
13.
Duan
,
Z.
, and
Muzychka
,
Y. S.
, 2008, “
Effects of Corrugated Roughness on Developed Laminar Flow in Microtubes
,”
ASME J. Fluids Eng.
0098-2202,
130
(
3
), p.
031102
.
14.
Hu
,
Y.
,
Werner
,
C.
, and
Li
,
D.
, 2003, “
Influence of Three-Dimensional Roughness on Pressure-Driven Flow Through Microchannels
,”
ASME J. Fluids Eng.
0098-2202,
125
(
5
), pp.
871
879
.
15.
Rawool
,
A. S.
,
Mitra
,
S. K.
, and
Kandlikar
,
S. G.
, 2006, “
Numerical Simulation of Flow Through Microchannels With Designed Roughness
,”
Microfluid. Nanofluid.
1613-4982,
2
(
3
), pp.
215
221
.
16.
Bavière
,
R.
,
Gamrat
,
G.
,
Favre-Marinet
,
M.
, and
Le Person
,
S.
, 2006, “
Modelling of Laminar Flows in Rough-Wall Microchannels
,”
ASME J. Fluids Eng.
0098-2202,
128
(
4
), pp.
734
741
.
17.
Croce
,
G.
,
D’Agaro
,
P.
, and
Nonino
,
C.
, 2007, “
Three-Dimensional Roughness Effect on Microchannel Heat Transfer and Pressure Drop
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
25–26
), pp.
5249
5259
.
18.
Chen
,
Y. P.
,
Zhang
,
C. B.
,
Shi
,
M. H.
, and
Peterson
,
G. P.
, 2009, “
Role of Surface Roughness Characterized by Fractal Geometry on Laminar Flow in Microchannels
,”
Phys. Rev. E
1063-651X,
80
(
2
), p.
026301
.
19.
Xiong
,
R. Q.
, and
Chung
,
J. N.
, 2010, “
Investigation of Laminar Flow in Microtubes With Random Rough Surfaces
,”
Microfluid. Nanofluid.
1613-4982,
8
(
1
), pp.
11
20
.
20.
Salomon
,
D.
, 2006,
Curves and Surfaces for Computer Graphics
,
Springer
,
New York
.
21.
2006,
ANSYS CFX, Software Package, Ver. 11.0
,
ANSYS, Inc.
,
Canonsburg, PA
.
22.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
23.
Wu
,
H. Y.
,
Wu
,
X.
, and
Wei
,
Z.
, 2009, “
Flow Friction and Heat Transfer of Ethanol-Water Solutions Through Silicon Microchannels
,”
J. Micromech. Microeng.
0960-1317,
19
(
4
), p.
045005
.
24.
Kandlikar
,
S. G.
,
Schmitt
,
D.
,
Carrano
,
A. L.
, and
Taylor
,
J. B.
, 2005, “
Characterization of Surface Roughness Effects on Pressure Drop in Single-Phase Flow in Minichannels
,”
Phys. Fluids
1070-6631,
17
(
10
), p.
100606
.
You do not currently have access to this content.