A spectral method for solving the steady flow of a shear-thinning Ellis fluid is discussed for the case of a planar channel with corrugated boundaries. Polynomial approximations are employed for the velocity and viscosity distributions in the regions around singularities. The proposed algorithm employs a fixed computational domain with the physical domain of interest submerged inside the computational domain. The flow boundary conditions are imposed using the concept of immersed boundary conditions. The method, thus, eliminates the need for grid generation. The algorithm relies on Fourier expansions in the flow direction and Chebyshev expansions in the transverse direction. Various tests confirm spectral accuracy of the algorithm.

1.
Chow
,
J. C. F.
, and
Soda
,
K.
, 1973, “
Laminar Flow and Blood Oxygenation in Channels With Boundary Irregularities
,”
ASME J. Appl. Mech.
0021-8936,
40
, pp.
843
850
.
2.
Sobey
,
I. J.
, 1980, “
“On the Flow Through Furrowed Channels.” Part 1. Calculated Flow Patterns
,”
J. Fluid Mech.
0022-1120,
96
, pp.
1
26
.
3.
Pearson
,
J. R. A.
, and
Tardy
,
P. M. J.
, 2002, “
Models for Non-Newtonian and Complex Fluids Through Porous Media
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
102
, pp.
447
473
.
4.
Floryan
,
J. M.
, 1997, “
Stability of Wall Bounded Shear Layers With Simulated Distributed Surface Roughness
,”
J. Fluid Mech.
0022-1120,
335
, pp.
29
55
.
5.
Caponi
,
E. A.
,
Fornberg
,
B.
,
Knight
,
D. D.
,
McLean
,
J. W.
,
Saffman
,
P. G.
, and
Yuen
,
H. C.
, 1982, “
Calculations of Laminar Viscous Flow Over a Moving Wavy Surface
,”
J. Fluid Mech.
0022-1120,
124
, pp.
347
362
.
6.
McLean
,
J. W.
, 1983, “
Computations of Turbulent Flow Over a Moving Wavy Boundary
,”
Phys. Fluids
1070-6631,
26
, pp.
2065
2073
.
7.
Deiber
,
J. A.
, and
Showalter
,
W. R.
, 1981, “
Modeling of Viscoelastic Fluid Through Porous Media
,”
AIChE J.
0001-1541,
27
, pp.
912
920
.
8.
Szumbarski
,
J.
, and
Floryan
,
J. M.
, 1999, “
A Direct Spectral Method for Determination of Flows Over Corrugated Boundaries
,”
J. Comput. Phys.
0021-9991,
153
, pp.
378
402
.
9.
Chaplain
,
V.
,
Allain
,
C.
, and
Hullin
,
J. P.
, 1998, “
Tracer Dispersion in Power-Law Fluids Flow Through Porous Media: Evidence of a Cross-Over From Logarithmic to a Power-Law Behavior
,”
Eur. Phys. J. B
,
6
, pp.
225
231
.
10.
Marshall
,
R. J.
, and
Metzner
,
A. B.
, 1967, “
Flow of Viscoelastic Fluids Through Porous Media
,”
Ind. Eng. Chem. Fundam.
0196-4313,
6
, pp.
393
400
.
11.
Cheremisinoff
,
N. P.
, 1988,
Encyclopedia of Fluid Mechanics
,
Gulf Publishing
,
Houston, TX
, Vol.
7
, pp.
253
286
.
12.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
, 1987,
Dynamics of Polymeric Fluids
,
Wiley
,
New York
, Vol.
I
.
13.
Matsuhisa
,
S.
, and
Bird
,
R. B.
, 1965, “
Analytical and Numerical Solutions for Laminar Flow of the Non-Newtonian Ellis Fluid
,”
AIChE J.
0001-1541,
11
, pp.
588
595
.
14.
Myers
,
T. G.
, 2005, “
Application of Non-Newtonian Models to Thin Film Flow
,”
Phys. Rev. E
1063-651X,
72
, p.
066302
.
15.
Benjamin
,
B.
, 1959, “
Shearing Flow Over a Wavy Boundary
,”
J. Fluid Mech.
0022-1120,
6
, pp.
161
205
.
16.
Tanda
,
G.
, and
Vittori
,
C. ,
1996, “
Fluid Flow and Heat Transfer in a Two-Dimensional Wavy Channel
,”
Journal of Heat and Mass Transfer
,
31
, pp.
411
418
.
17.
Dyke
,
M. V.
, 1964,
Perturbation Methods in Fluid Mechanics
,
Academic
,
New York
.
18.
Nayfeh
,
A. H.
, 1985,
Problems in Perturbation
,
Wiley
,
New York
.
19.
Shivamoggi
,
B. K.
, 2003,
Perturbation Methods for Differential Equations
,
Birkhauser
,
Boston, MA
.
20.
Tsangaris
,
S.
, and
Leiter
,
E.
, 1984, “
On Laminar Steady Flow in Sinusoidal Channels
,”
J. Eng. Math.
0022-0833,
18
, pp.
89
103
.
21.
Peskin
,
C. S.
, 1982, “
The Fluid Dynamics of Heart Valves: Experimental, Theoretical and Computational Methods
,”
Annu. Rev. Fluid Mech.
0066-4189,
14
, pp.
235
259
.
22.
Mittal
,
R.
, and
Iaccarino
,
G.
, 2005, “
Immersed Boundary Methods
,”
Annu. Rev. Fluid Mech.
0066-4189,
37
, pp.
239
261
.
23.
Hussain
,
S. Z.
, and
Floryan
,
J. M.
, 2008, “
Immersed Boundary Conditions Method for Unsteady Flow Problems Described by Laplace Operator
,”
Int. J. Numer. Methods Fluids
0271-2091,
56
, pp.
1765
1786
.
24.
Hussain
,
S. Z.
, and
Floryan
,
J. M.
, 2008, “
Implicit Spectrally-Accurate Method for Moving Boundary Problems Using Immersed Boundary Conditions Concept
,”
J. Comput. Phys.
0021-9991,
227
, pp.
4459
4477
.
25.
Mason
,
J. C.
, and
Handscoomd
,
D. C.
, 2002,
Chebyshev Polynomials
,
Chapman and Hall
,
London
/
CRC
,
Boca Raton, FL
.
26.
Canuto
,
C.
,
Hussaini
,
M. Y.
, and
Quarterori
,
A.
, 1996,
Spectral Methods in Fluid Dynamics
,
Springer
,
New York
.
You do not currently have access to this content.