A spectral method for solving the steady flow of a shear-thinning Ellis fluid is discussed for the case of a planar channel with corrugated boundaries. Polynomial approximations are employed for the velocity and viscosity distributions in the regions around singularities. The proposed algorithm employs a fixed computational domain with the physical domain of interest submerged inside the computational domain. The flow boundary conditions are imposed using the concept of immersed boundary conditions. The method, thus, eliminates the need for grid generation. The algorithm relies on Fourier expansions in the flow direction and Chebyshev expansions in the transverse direction. Various tests confirm spectral accuracy of the algorithm.
1.
Chow
, J. C. F.
, and Soda
, K.
, 1973, “Laminar Flow and Blood Oxygenation in Channels With Boundary Irregularities
,” ASME J. Appl. Mech.
0021-8936, 40
, pp. 843
–850
.2.
Sobey
, I. J.
, 1980, ““On the Flow Through Furrowed Channels.” Part 1. Calculated Flow Patterns
,” J. Fluid Mech.
0022-1120, 96
, pp. 1
–26
.3.
Pearson
, J. R. A.
, and Tardy
, P. M. J.
, 2002, “Models for Non-Newtonian and Complex Fluids Through Porous Media
,” J. Non-Newtonian Fluid Mech.
0377-0257, 102
, pp. 447
–473
.4.
Floryan
, J. M.
, 1997, “Stability of Wall Bounded Shear Layers With Simulated Distributed Surface Roughness
,” J. Fluid Mech.
0022-1120, 335
, pp. 29
–55
.5.
Caponi
, E. A.
, Fornberg
, B.
, Knight
, D. D.
, McLean
, J. W.
, Saffman
, P. G.
, and Yuen
, H. C.
, 1982, “Calculations of Laminar Viscous Flow Over a Moving Wavy Surface
,” J. Fluid Mech.
0022-1120, 124
, pp. 347
–362
.6.
McLean
, J. W.
, 1983, “Computations of Turbulent Flow Over a Moving Wavy Boundary
,” Phys. Fluids
1070-6631, 26
, pp. 2065
–2073
.7.
Deiber
, J. A.
, and Showalter
, W. R.
, 1981, “Modeling of Viscoelastic Fluid Through Porous Media
,” AIChE J.
0001-1541, 27
, pp. 912
–920
.8.
Szumbarski
, J.
, and Floryan
, J. M.
, 1999, “A Direct Spectral Method for Determination of Flows Over Corrugated Boundaries
,” J. Comput. Phys.
0021-9991, 153
, pp. 378
–402
.9.
Chaplain
, V.
, Allain
, C.
, and Hullin
, J. P.
, 1998, “Tracer Dispersion in Power-Law Fluids Flow Through Porous Media: Evidence of a Cross-Over From Logarithmic to a Power-Law Behavior
,” Eur. Phys. J. B
, 6
, pp. 225
–231
.10.
Marshall
, R. J.
, and Metzner
, A. B.
, 1967, “Flow of Viscoelastic Fluids Through Porous Media
,” Ind. Eng. Chem. Fundam.
0196-4313, 6
, pp. 393
–400
.11.
Cheremisinoff
, N. P.
, 1988, Encyclopedia of Fluid Mechanics
, Gulf Publishing
, Houston, TX
, Vol. 7
, pp. 253
–286
.12.
Bird
, R. B.
, Armstrong
, R. C.
, and Hassager
, O.
, 1987, Dynamics of Polymeric Fluids
, Wiley
, New York
, Vol. I
.13.
Matsuhisa
, S.
, and Bird
, R. B.
, 1965, “Analytical and Numerical Solutions for Laminar Flow of the Non-Newtonian Ellis Fluid
,” AIChE J.
0001-1541, 11
, pp. 588
–595
.14.
Myers
, T. G.
, 2005, “Application of Non-Newtonian Models to Thin Film Flow
,” Phys. Rev. E
1063-651X, 72
, p. 066302
.15.
Benjamin
, B.
, 1959, “Shearing Flow Over a Wavy Boundary
,” J. Fluid Mech.
0022-1120, 6
, pp. 161
–205
.16.
Tanda
, G.
, and Vittori
, C. ,
1996, “Fluid Flow and Heat Transfer in a Two-Dimensional Wavy Channel
,” Journal of Heat and Mass Transfer
, 31
, pp. 411
–418
.17.
Dyke
, M. V.
, 1964, Perturbation Methods in Fluid Mechanics
, Academic
, New York
.18.
Nayfeh
, A. H.
, 1985, Problems in Perturbation
, Wiley
, New York
.19.
Shivamoggi
, B. K.
, 2003, Perturbation Methods for Differential Equations
, Birkhauser
, Boston, MA
.20.
Tsangaris
, S.
, and Leiter
, E.
, 1984, “On Laminar Steady Flow in Sinusoidal Channels
,” J. Eng. Math.
0022-0833, 18
, pp. 89
–103
.21.
Peskin
, C. S.
, 1982, “The Fluid Dynamics of Heart Valves: Experimental, Theoretical and Computational Methods
,” Annu. Rev. Fluid Mech.
0066-4189, 14
, pp. 235
–259
.22.
Mittal
, R.
, and Iaccarino
, G.
, 2005, “Immersed Boundary Methods
,” Annu. Rev. Fluid Mech.
0066-4189, 37
, pp. 239
–261
.23.
Hussain
, S. Z.
, and Floryan
, J. M.
, 2008, “Immersed Boundary Conditions Method for Unsteady Flow Problems Described by Laplace Operator
,” Int. J. Numer. Methods Fluids
0271-2091, 56
, pp. 1765
–1786
.24.
Hussain
, S. Z.
, and Floryan
, J. M.
, 2008, “Implicit Spectrally-Accurate Method for Moving Boundary Problems Using Immersed Boundary Conditions Concept
,” J. Comput. Phys.
0021-9991, 227
, pp. 4459
–4477
.25.
Mason
, J. C.
, and Handscoomd
, D. C.
, 2002, Chebyshev Polynomials
, Chapman and Hall
, London
/CRC
, Boca Raton, FL
.26.
Canuto
, C.
, Hussaini
, M. Y.
, and Quarterori
, A.
, 1996, Spectral Methods in Fluid Dynamics
, Springer
, New York
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.