In the continuous strip casting process a meniscus forms a compliant boundary between the casting nozzle and transporting conveyor. Movement of this meniscus during casting has been shown to create surface defects, which require extensive cold work to remove and limit the minimum thickness for which sections may be cast. This paper discusses experimental work conducted to test an analytical model of the meniscus oscillation. A high frame rate shadowgraph technique was used on an isothermal water model of the casting process to observe meniscus motion, and thus allow the calculation of meniscus frequency, amplitude, contact points and contact angles. Both natural frequency and flow excited tests were conducted. Natural frequency tests were also conducted using mercury which has a nonwetting contact angle typical of molten metals. The experimental results were found to be in good agreement with the predictions of theory for both wetting and nonwetting conditions. The experimentally verified analytical model for meniscus motion is valuable to the design of a continuous casting process because it describes the effect of geometrical parameters on meniscus motion and thus provides an opportunity to mitigate the effects of boundary motion on surface quality.

References

References
1.
McLeod
,
I. M.
, 2006, “
An Isothermal Water Model of Continuous Aluminium Sheet Casting
,”
M.S. thesis
, University of New Brunswick, Fredericton, NB, Canada.
2.
Gerber
,
A. G.
,
Holloway
,
A. G. L.
, and
Ng
,
C.
, 2007, “
A Model of the Unsteady Response of a Backward-Facing Compliant Step
,”
Int. J. Numer. Methods Fluids
,
55
(
1
), pp.
57
80
.
3.
Tavana
,
H.
, and
Neumann
,
A. W.
, 2007, “
Recent Progress in the Determination of Solid Surface Tensions from Contact Angles
,”
Adv. Colloid Interface Sci.
,
132
(
1
), pp.
1
32
.
4.
Erbil
,
H. Y.
,
McHale
,
G.
,
Rowan
,
S. M.
, and
Newton
,
M. I.
, 1999, “
Determination of the Receding Contact Angle of Sessile Drops on Polymer Surfaces by Evaporation
,”
Langmuir
,
15
(
21
), pp.
7378
7385
.
5.
Hennig
,
A.
,
Eichhorn
,
K. J.
,
Staudinger
,
U.
,
Sahre
,
K.
,
Rogalli
,
M.
,
Stamm
,
M.
,
Neumann
,
A. W.
, and
Grundke
,
K.
, 2004, “
Contact Angle Hysteresis: Study by Dynamic Cycling Contact Angle Measurements and Variable Angle Spectro-scopic Ellipsometry on Polyimide
,”
Langmuir
,
20
(
16
), pp.
6685
6691
.
6.
Lam
,
C. N. C.
,
Ko
,
R. H. Y.
,
Yu
,
L. M. Y.
,
Ng
,
A.
,
Li
,
D.
,
Hair
,
M. L.
, and
Neumann
,
A. W.
, 2001, “
Dynamic Cycling Contact Angle Measurements: Study of Advancing and Receding Contact Angles
,”
J. Colloid Interface Sci.
,
243
(
1
), pp.
208
218
.
7.
Š.
Šikalo
,
Wilhelm
,
H. D.
Roisman
,
I. V.
Jakirlić
,
S.
, and
Tropea
,
C.
, 2005, “
Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations
,”
Phys. Fluids
,
17
(
6
), pp.
062103
.
8.
Jiang
,
T.
,
Oh
,
S.
, and
Slattery
,
J. C.
, 1979, “
Correlation for Dynamic Contact Angle
,”
J. Colloid Interface Sci.
,
69
(
1
), pp.
74
77
.
9.
Bracke
,
M.
,
Voeght
,
F. D.
, and
Joos
,
P.
, 1989, “
The Kinetics of Wetting: The Dynamic Contact Angle
,”
Prog. Colloid Polymer Sci.
,
79
, pp.
142
149
.
10.
Seebergh
,
J. E.
, and
Berg
,
J. C.
, 1992, “
Dynamic Wetting in the Low Capillary Number Regime
,”
Chem. Eng. Sci.
,
47
(
17-18
), pp.
4455
4464
.
11.
Kistler
,
S. F.
, 1993, “
Hydrodynamics of Wetting
,”
Wettability
,
J. C.
Berg
, ed.,
Marcel Dekker
,
New York
.
12.
Pierce
,
A. D.
,
Acoustics: An Introduction to Its Physical Principles and Applications
(
Acoustical Society of America
, New York, 1991).
13.
Batchelor
,
G. K.
,
An Introduction to Fluid Dynamics
(
Cambridge University Press
,
Cambridge, England
, 1967).
14.
Hahn
,
G. J.
, and
Shapiro
,
S. S.
,
Statistical Models in Engineering
(
Wiley
,
New York
, 1967).
15.
Andreas
,
J. M.
,
Hauser
,
E. A.
, and
Tucker
,
W. B.
, 1938, “
Boundary Tension by Pendent Drops
,”
J. Phys. Chem.
,
42
, pp.
1001
1019
.
16.
Tavoularis
,
S.
,
Measurement in Fluid Mechanics
(
Cambridge University Press
,
New York
, 2005).
You do not currently have access to this content.