Flow dynamics in nano-scaled structures such as nanochannels and nanopores have recently become important in developing next-generation high-speed DNA sequencers. In the present paper, we report the electrokinetic flow dynamics of λDNA confined in nanochannels having heights that are smaller than the molecular radius of gyration. Nanochannels of varying heights of from 330 to 650 nm were used in the experiments in order to systematically investigate the effect of confinement. Weakly aggregated λDNA flowed in a direction opposite to an applied electric field as a result of the competition of electrophoresis and electroosmotic flows. The terminal velocity of λDNA was proportional to the strength of the electric field, and the mobility was found to decrease with the channel height. A simple theoretical model explaining the decrease in the mobility was developed taking into account the shear stress due to small clearances between λDNA and the walls of nanochannels. The validity of the model was confirmed by reasonable agreement between the theoretical and experimental results. The theoretical model and the transport properties under confinement provide basic design data for the development of next-generation DNA sequencers.

References

References
1.
Mannion
,
J. T.
,
Reccius
,
C. H.
,
Cross
,
J. D.
, and
Craighead
,
H. G.
, 2006, “
Conformational Analysis of Single DNA Molecules Undergoing Entropically Induced Motion in Nanochannels
,”
Biophys. J.
,
90
(
12
), pp.
4538
4545
.
2.
Liang
,
X.
, and
Chou
,
S. Y.
, 2008, “
Nanogap Detector inside Nanofluidic Channel for Fast Real-Time Label-Free DNA Analysis
,”
Nano Lett.
,
8
(
5
), pp.
1472
1476
.
3.
Guo
,
L. J.
,
Cheng
,
X.
, and
Chou
,
C. F.
, 2004, “
Fabrication of Size-Controllable Nanofluidic Channels by Nanoimprinting and Its Application for DNA Stretching
,”
Nano Lett.
,
4
(
1
), pp.
69
73
.
4.
Dekker
,
C.
, 2007, “
Solid-State Nanopores
,”
Nat. Nanotechnol.
,
2
, pp.
209
215
.
5.
Storm
,
A. J.
,
Chen
,
J. H.
,
Zandbergen
,
H. W.
, and
Dekker
,
C.
, 2005, “
Translocation of Double-Strand DNA through a Silicon Oxide Nanopore
,”
Phys. Rev. E
,
71
(
5
), pp.
051903
.
6.
Nagahiro
,
S.
,
Kawano
,
S.
, and
Kotera
,
H.
, 2007, “
Separation of Long DNA Chains Using a Nonuniform Electric Field: a Numerical Study
,”
Phys. Rev. E
,
75
(
1
), pp.
011902
.
7.
Kaji
,
N.
,
Tezuka
,
Y.
,
Takamura
,
Y.
,
Ueda
,
M.
,
Nishimoto
,
T.
,
Nakanishi
,
H.
,
Horiike
,
Y.
, and
Baba
,
Y.
, 2004, “
Separation of Long DNA Molecules by Quartz Nanopillar Chips under a Direct Current Electric Field
,”
Anal. Chem.
,
76
(
1
), pp.
15
22
.
8.
Tsutsui
,
M.
,
Taniguchi
,
M.
,
Yokota
,
K.
, and
Kawai
,
T.
, 2010, “
Identifying Single Nucleotides by Tunnelling Current
,”
Nat.Nanotechnol.
,
5
, pp.
286
290
.
9.
Sparreboom
,
W.
,
van den Berg
,
A.
, and
Eijkel
,
J. C. T.
, 2010, “
Transport in Nanofluidic Systems: A Review of Theory and Applications
,”
New J. Phys.
,
12
, pp.
015004
.
10.
Sparreboom
,
W.
,
van den Berg
,
A.
, and
Eijkel
,
J. C. T.
, 2009, “
Principles and Applications of Nanofluidic Transport
,”
Nat. Nanotechnol.
,
4
, pp.
713
720
.
11.
Shintaku
,
H.
,
Tatara
,
Y.
, and
Kawano
,
S.
, 2009, “
Droplet Transportation on Vertical Parallel Electrodes Using Electrowetting and Interfacial Oscillation
,”
J. Fluid Sci. Technol.
,
4
(
3
), pp.
636
647
.
12.
Nguyen
,
N. T.
, and
Wereley
,
S. T.
, 2002,
Fundamentals and Applications of Microfluidics
,
Artech House
,
Massachusetts
.
13.
van der Heyden
,
F. H. J.
,
Stein
,
D.
, and
Dekker
,
C.
, 2005, “
Streaming Currents in a Single Nanofluidic Channel
,”
Phys. Rev. Lett.
,
95
(
11
), pp.
116104
.
14.
Stein
,
D.
,
Kruithof
,
M.
, and
Dekker
,
C.
, 2004, “
Surface-Charge-Governed Ion Transport in Nanofluidic Channels
,”
Phys. Rev. Lett.
,
93
(
3
), pp.
035901
.
15.
Schoch
,
R. B.
, van
Lintel
,
H.
, and
Renaud
,
P.
, 2005, “
Effect of the Surface Charge on Ion Transport through Nanoslits
,”
Phys. Fluids
,
17
(
10
), pp.
100604
.
16.
Reisner
,
W.
,
Beech
,
J. P.
,
Larsen
,
N. B.
,
Flyvbjerg
,
H.
,
Kristensen
,
A.
, and
Tegenfeldt
,
J. O.
, 2007, “
Nanoconfinement-Enhanced Conformational Response of Single DNA Molecules to Changes in Ionic Environment
,”
Phys. Rev. Lett.
,
99
(
5
), pp.
058302
.
17.
Bakajin
,
O. B.
,
Duke
,
T. A. J.
,
Chou
,
C. F.
,
Chan
,
S. S.
,
Austin
,
R. H.
, and
Cox
,
E. C.
, 1998, “
Electrohydrodynamic Stretching of DNA in Confined Environments
,”
Phys. Rev. Lett.
,
80
(
12
), pp.
2737
2740
.
18.
Brochard
,
F.
, and
de Gennes
,
P. G.
, 1977, “
Dynamics of Confined Polymer Chains
,”
J. Chem. Phys.
,
67
(
1
), pp.
52
56
.
19.
Odijk
,
T.
, 2008, “
Scaling Theory of DNA Confined in Nanochannels and Nanoslits
,”
Phys. Rev. E
,
77
(
6
), pp.
060901
(R).
20.
Stein
,
D.
,
van der Heyden
,
F. H. J.
,
Koopmans
,
W. J. A.
, and
Dekker
,
C.
, 2006, “
Pressure-Driven Transport of Confined DNA Polymers in Fluidic Channels
,”
Proc. Natl. Acad. Sci. U.S.A.
,
103
(
43
), pp.
15853
15858
.
21.
Balducci
,
A.
,
Mao
,
P.
,
Han
,
J.
, and
Doyle
,
P. S.
, 2006, “
Double-Stranded DNA Diffusion in Slitlike Nanochannels
,”
Macromolecules
,
39
(
18
), pp.
6273
6281
.
22.
Branton
,
D.
,
Deamer
,
D. W.
,
Marziali
,
A.
,
Bayley
,
H.
,
Benner
,
S. A.
,
Butler
,
T.
,
Di Ventra
,
M.
,
Garaj
,
S.
,
Hibbs
,
A.
,
Huang
,
X.
,
Jovanovich
,
S. B.
,
Krstic
,
P. S.
,
Lindsay
,
S.
,
Ling
,
X. S.
,
Mastrangelo
,
C. H.
,
Meller
,
A.
,
Oliver
,
J. S.
,
Pershin
,
Y. V.
,
Ramsey
,
J. M.
,
Riehn
,
R.
,
Soni
,
G. V.
,
Tabard-Cossa
,
V.
,
Wanunu
,
M.
,
Wiggin
,
M.
, and
Schloss
,
J. A.
, 2008, “
The Potential and Challenges of Nanopore Sequencing
,”
Nat. Biotechnol.
,
26
(
10
), pp.
1146
1153
.
23.
Cross
,
J. D.
,
Strychalski
,
E. A.
, and
Craighead
,
H. G.
, 2007, “
Size-Dependent DNA Mobility in Nanochannels
,”
J. App. Phys.
,
102
, pp.
024701
.
24.
Salieb-Beugelaar
,
G. B.
,
Teapal
,
J.
,
van Nieuwkasteele
,
J.
,
Wijnperlé
,
D.
,
Tegenfeldt
,
J. O.
,
Lisdat
,
F.
,
van den Berg
,
A.
, and
Eijkel
,
J. C. T.
, 2008, “
Field-Dependent DNA Mobility in 20 nm High Nanoslits
,”
Nano Lett.
,
8
(
7
), pp.
1785
1790
.
25.
Madou
,
M. J.
, 2002,
Fundamentals of Microfabrication
,
2nd ed.
,
CRC Press
,
Florida
.
26.
Alberts
,
B.
,
Johnson
,
A.
,
Lewis
,
J.
,
Raff
,
M.
,
Roberts
,
K.
, and
Walter
,
P.
, 2002,
Molecular Biology of the Cell
,
4th ed.
,
Garland Science
,
New York
.
27.
Parkins
,
T. T.
,
Smith
,
D. E.
,
Larson
,
R. G.
, and
Chu
,
S.
, 1995, “
Stretching of a Single Tethered Polymer in a Uniform Flow
,”
Science
,
268
(
5207
), pp.
83
87
.
28.
Sze
,
S. M.
, 2002,
Semiconductor Devices: Physics and Technology
,
2nd ed.
,
John Wiley & Sons, Inc.
,
New Jersey
.
29.
Sinton
,
D.
, 2004, “
Microscale Flow Visualization
,”
Microfluid. Nanofluid.
,
1
(
1
), pp.
2
21
.
30.
Westerweel
,
J.
, 1997, “
Fundamentals of Digital Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1379
1392
.
31.
Kim
,
M. J.
,
Beskok
,
A.
, and
Kihm
,
K. D.
, 2002, “
Electro–osmosis-driven Micro-channel Flows: A Comparative Study of Microscopic Particle Image Velocimetry Measurements and Numerical Simulations
,”
Exp. Fluids
,
33
, pp.
170
180
.
32.
Shintaku
,
H.
,
Azuma
,
S.
, and
Kawano
,
S.
, 2009, “
Measurements of Electric Field and Electrokinetic Phenomena Using Two Kinds of Tracer Particles with Different Mobilities
,”
J. Fluid Sci. Technol.
,
4
(
3
), pp.
687
698
.
33.
Brochard
,
F.
, 1977, “
Dynamics of Polymer Chains Trapped in a Slit
,”
J. Phys. (France)
,
38
, pp.
1285
1291
.
34.
Oosawa
,
F.
, 1957, “
A Simple Theory of Thermodynamic Properties of Polyelectrolyte Solutions
,”
J. Polym. Sci.
,
23
, pp.
421
430
.
35.
Manning
,
G. S.
, 1978, “
The Molecular Theory of Polyelectrolyte Solutions with Applications to the Electrostatic Properties of Polynucleotides
,”
Q. Rev. Biophys.
,
11
, pp.
179
246
.
You do not currently have access to this content.