Methods of modeling vortex generation in computational fluid dynamics calculations without meshing the vortex generating device are investigated. In this way, the effect of adding vortices to existing flows can be assessed without the need to modify the computational grid; this can represent a significant saving. Previous work in this area has focused on boundary layer control. This study looks at larger scale applications, such as using vortices for force augmentation or directing flow. Two different approaches are used: modeling the vortex generator and modeling just the vortex alone. For the former, an existing method, which acts to align the flow with the vortex generator by adding a forcing term to the governing equations, is tested, but found to be unsuitable for use on this scale. The other approach is to add specified vortex velocity profiles, allowing the introduction of arbitrary vortices. A new version is developed to add continuous 3D velocity distributions in regions where desired vortices are to be created. It is implemented using several different forms of forcing. After basic testing, all methods are applied in a practical engineering case using a commercial solver.

References

References
1.
Garrood
,
B. J.
, 2004, “
Aerodynamic Interaction Mechanisms Relevant to the Underbodies of Formula 1 Cars
,” Ph.D. thesis, Imperial College London.
2.
Katz
,
J.
, 2007, “
Directing a Swirl
,”
Bernoulli
,
1
(
4
), pp.
58
61
.
3.
Katz
,
J.
, and
Morey
,
F.
, 2008, “
Aerodynamics of Large-Scale Vortex Generator in Ground-Effect
,”
Trans. ASME, J. Fluids Eng.
,
130
(
7
), p.
071101
.
4.
Zhang
,
X.
,
Zerihan
,
J.
,
Ruhrmann
,
A.
, and
Deviese
,
M.
, 2002, “
Tip Vortices Generated by a Wing in Ground Effect
,”
11th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
.
5.
Zhang
,
X.
, and
Zerihan
,
J.
, 2003, “
Off-Surface Aerodynamic Measurements of a Wing in Ground Effect
,”
J. Aircr.
,
40
(
4
), pp.
716
725
.
6.
Zhang
,
X.
, and
Zerihan
,
J.
, 2004, “
Edge Vortices of a Double-Element Wing in Ground Effect
,”
J. Aircr.
,
41
(
5
), pp.
1127
1137
.
7.
Senior
,
A. E.
, and
Zhang
,
X.
, 2001, “
The Force and Pressure of a Diffuser-Equipped Bluff Body in Ground Effect
,”
Trans. ASME J. Fluids Eng.
,
123
(
1
), pp.
105
111
.
8.
Senior
,
A. E.
, 2002, “
The Aerodynamics of a Diffuser Equipped Bluff Body in Ground Effect
,” Ph.D. thesis, University of Southampton.
9.
Ruhrmann
,
A.
, and
Zhang
,
X.
, 2003, “
Influence of Diffuser Angle on a Bluff Body in Ground Effect
,”
Trans. ASME, J. Fluids Eng.
,
125
(
2
), pp.
332
338
.
10.
Zhang
,
X.
,
Senior
,
A.
, and
Ruhrmann
,
A.
, 2004, “
Vortices Behind a Bluff Body With an Upswept Aft Section in Ground Effect
,”
Int. J. Heat Fluid Flow
,
25
(
1
), pp.
1
9
.
11.
Zhang
,
X.
,
Toet
,
W.
, and
Zerihan
,
J.
, 2006, “
Ground Effect Aerodynamics of Race Cars
,”
Trans. ASME, App. Mech. Rev.
,
59
, pp.
33
49
.
12.
Katz
,
J.
, 2005,
Race Car Aerodynamics: Designing for Speed
,
2nd ed.
,
Bentley Publishers
,
Cambridge, MA
.
13.
Katz
,
J.
, 2006, “
Aerodynamics of Race Cars
,”
Ann. Rev. Fluid Mech.
,
38
, pp.
27
63
.
14.
Garcia
,
D. L.
, and
Katz
,
J.
, 2003, “
Trapped Vortex in Ground Effect
,”
AIAA J.
,
41
(
4
), pp.
674
678
.
15.
Bender
,
E. E.
,
Anderson
,
B. H.
, and
Yagle
,
P. J.
, 1999, “
Vortex Generator Modeling for Navier-Stokes Codes
,”
3rd Joint ASME/JSME Fluids Engineering Conference
, Paper No. FEDSM99-6919,
San Francisco, California
, 18–23 July.
16.
Seibert
,
W.
,
Lanfrit
,
M.
,
Reese
,
H.
, and
Hemmer
,
H. P.
, 2008, “
The Immersed Boundary CFD Approach – A Rapid, Reliable and highly Automated Method to Simulate Complex Flow Fields
,”
7th MIRA International Vehicle Aerodynamics Conference
,
Coventry, UK
, pp.
350
363
.
17.
Allan
,
B. G.
,
Yao
,
C.-S.
, and
Lin
,
J. C.
, 2002, “
Simulation of Embedded Streamwise Vortices on a Flat Plate
,” NASA/CR-2002-211654, ICASE Report No. 2002-14.
18.
Waithe
,
K. A.
, 2003, “
Source Term Model for an Array of Vortex Generator Vanes
,” Report No. NASA-CR-2003-212157.
19.
Waithe
,
K. A.
, 2004, “
Source Term Model for Vortex Generator Vanes in a Navier-Stokes computer Code
,”
42nd AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2004-1236,
Reno, Nevada
, 5–8 January.
20.
Chima
,
R. V.
, 2002, “
Computational Modeling of Vortex Generators for Turbomachinery
,”
Proceedings of ASME Turbo Expo 2002
, Paper No. GT-2002-30677,
Amsterdam, the Netherlands
, 3–6 June.
21.
Iannelli
,
P.
,
Denaro
,
F. M.
, and
Lampitella
,
P.
, 2006, “
Micro Vortex Generators RANS Simulation via Source Term Modelling in a Commercial CFD Solver
,”
European Drag Reduction and Flow Control Meeting
,
Ischia, Italy
, 10–13 April.
22.
Brunet
,
V.
,
François
,
C.
,
Garnier
,
E.
, and
Pruvost
,
M.
, 2006, “
Experimental and Numerical Investigations of Vortex Generators Effects
,”
3rd AIAA Flow Control Conference
, AIAA Paper No. 2006-3027,
San Francisco, California
, 5–8 June.
23.
Gao
,
L.-H.
,
Zhang
,
X.-W.
,
He
,
F.
and
Zhu
,
Y.
, 2007, “
Source Term Model of Vane Flow on a Flat Plate
,”
J. Aerosp. Pow.
,
22
(
8
), pp.
1330
1334
.
24.
Jirásek
,
A.
, 2004, “
A Modified Vortex Generator Model and its Application to Complex Aerodynamic Flows
,” FOI (Swedish Defence Research Agency) Report No. FOI-R-1204-SE.
25.
Jirásek
,
A.
, 2004, “
A Vortex Generator Model and its Application to Flow Control
,”
22nd Applied Aerodynamics Conference and Exhibit
, AIAA Paper No. 2004-4965,
Providence, Rhode Island
, 16–19 August.
26.
Jirásek
,
A.
, 2005, “
Vortex-Generator Model and its Application to Flow Control
,”
J. Aircr.
,
42
(
6
), pp.
1486
1491
.
27.
Jirásek
,
A.
, 2006, “
Design of Vortex Generator Flow Control in Inlets
,”
J. Aircr.
,
43
(
6
), pp.
1886
1892
.
28.
FOI (Swedish Defence Research Agency)
, 2007,
Edge User Guide
,
FOI
,
Stockholm, Sweden
.
29.
FOI (Swedish Defence Research Agency)
, 2007,
Edge Theoretical Formulation
,
FOI
,
Stockholm, Sweden
.
30.
Wallin
,
F.
, and
Eriksson
,
L.-E.
, 2006, “
A Tuning-Free Body-Force Vortex Generator Model
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2006-0873,
Reno, Nevada
, 9–12 January.
31.
Wallin
,
F.
, and
Eriksson
,
L.-E.
, 2008, “
Design of an Aggressive Flow-Controlled Turbine Duct
,”
Proceedings of the ASME Turbo Expo
,
6
, pp.
2577
2585
.
32.
Fluent Inc.
, 2005,
Fluent 6.2 Documentation
,
Fluent
,
New York
.
33.
May
,
N. E.
, 2001, “
A New Vortex Generator Model for use in Complex Configuration CFD Solvers
,”
19th AIAA Applied Aerodynamics Conference
, AIAA Paper No. 2001-2434,
Anaheim, California
, 11–14 June.
34.
Batchelor
,
G. K.
, 2000,
An Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
35.
Hall
,
M. G.
, 1966, “
The Structure of Concentrated Vortex Cores
,”
Prog. Aeronaut. Sci.
,
7
, pp.
53
110
.
36.
Hall
,
M. G.
, 1972, “
Vortex Breakdown
,”
Ann. Rev. Fluid Mech.
,
4
, pp.
195
218
.
37.
Lambourne
,
N. C.
, and
Bryer
,
D. W.
, 1961, “
The Bursting of Leading-Edge Vortices — Some Observations and Discussion of the Phenomenon
,” Aeronautical Research Council R&M Paper No. 3282.
38.
Reck
,
M.
, 2004, “
Computational Fluid Dynamics, With Detached Eddy Simulation and the Immersed Boundary Technique, Applied to Oscillating Airfoils and Vortex Generators
,” Ph.D. thesis, Technical University of Denmark.
39.
You
,
D.
,
Wang
,
M.
,
Mittal
,
R.
, and
Moin
,
P.
, 2006, “
Large-Eddy Simulations of Longitudinal Vortices Embedded in a Turbulent Boundary Layer
,”
AIAA J.
,
44
(
12
), pp.
3032
3039
.
40.
Shan
,
H.
,
Jiang
,
L.
,
Liu
,
C.
,
Love
,
M.
, and
Maines
,
B.
, 2008, “
Numerical Study of Passive and Active Flow Separation Control Over a NACA0012 Airfoil
,”
Comput. Fluids
,
37
, pp.
975
992
.
41.
Ghosh
,
S.
,
Choi
,
J.-I.
, and
Edwards
,
J. R.
, 2011, “
Numerical Simulations of Effects of Micro Vortex Generators Using Immersed-Boundary Methods
,”
AIAA J.
,
48
(
1
), pp.
92
103
.
42.
Iaccarino
,
G.
, and
Verzicco
,
R.
, 2003, “
Immersed Boundary Technique for Turbulent Flow Simulations
,”
App. Mech. Rev.
,
56
(
3
), pp.
331
347
.
43.
Mittal
,
R.
, and
Iaccarino
,
G.
, 2005, “
Immersed Boundary Methods
,”
Ann. Rev. Fluid Mech.
,
37
, pp.
239
261
.
44.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
, 2000, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
, pp.
35
60
.
45.
Peller
,
N.
, Le
Duc
,
A.
,
Tremblay
,
F.
, and
Manhart
,
M.
, 2006, “
High-Order Stable Interpolations for Immersed Boundary Methods
,”
Int. J. Numer. Methods Fluids
,
52
, pp.
1175
1193
.
46.
Khadra
,
K.
,
Angot
,
P.
,
Parneix
,
S.
, and
Caltagirone
,
J.-P.
, 2000, “
Fictitous Domain Approach for Numerical Modelling of Navier–Stokes Equations
,”
Int. J. Numer. Methods Fluids
,
34
, pp.
651
684
.
47.
Kevlahan
,
N. K.-R.
, and
Ghidaglia
,
J.-M.
, 2001, “
Computation of Turbulent Flow Past an Array of Cylinders Using a Spectral Method With Brinkman Penalization
,”
Euro. J. Mech. Part B/Fluids
,
20
, pp.
333
350
.
48.
Angot
,
P.
,
Bruneau
,
C.-H.
, and
Fabrie
,
P.
, 1999, “
A Penalization Method to take into account Obstacles in Incompressible Viscous Flows
,”
Numerische Mathematik
,
81
, pp.
497
520
.
49.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
, 1993, “
Modeling a No-Slip Flow Boundary With an External Force Field
,”
J. Comput. Phys.
,
105
, pp.
354
366
.
50.
Saiki
,
E. M.
, and
Biringen
,
S.
, 1996, “
Numerical Simulation of a Cylinder in Uniform Flow: Application of a Virtual Boundary Method
,”
J. Comput. Phys.
,
123
, pp.
450
465
.
51.
Lee
,
C.
, 2003, “
Stability Characteristics of the Virtual Boundary Method in Three-Dimensional Applications
,”
J. Comput. Phys.
,
184
, pp.
559
591
.
52.
Mohd-Yusof
,
J.
, 1997, “
Combined Immersed-Boundary/B-Spline Methods for Simulations of Flow in Complex Geometries
,”
Center for Turbulence Research Annual Research Briefs
,
NASA Ames/Stanford University
, pp.
317
327
.
53.
Mohd-Yusof
,
J.
, 1998, “
Development of Immersed Boundary Methods for Complex Geometries
,”
Center for Turbulence Research Annual Research Briefs
,
NASA Ames/Stanford University
, pp.
325
336
.
54.
Verzicco
,
R.
,
Mohd-Yusof
,
J.
,
Orlandi
,
P.
, and
Haworth
,
D.
, 1998, “
LES in Complex Geometries using Boundary Body Forces
,”
Center for Turbulence Research Proceedings of the Summer Program
,
NASA Ames/Stanford University
, pp.
171
186
.
55.
Verzicco
,
R.
,
Mohd-Yusof
,
J.
,
Orlandi
,
P.
, and
Haworth
,
D.
, 2000, “
Large Eddy Simulation in Complex Geometric Configurations Using Boundary Body Forces
,”
AIAA J.
,
38
(
3
), pp.
427
433
.
56.
Kunik
,
W. G.
, 1986, “
Application of a Computational Model for Vortex Generators in Subsonic Internal Flows
,”
AIAA/ASME/SAE/ASEE 22nd Joint Propulsion Conference
, AIAA Paper No. 86-1458,
Huntsville, Alabama
, 16–18 June.
57.
Anderson
,
B. H.
, and
Levy
,
R.
, 1991, “
A Design Strategy for the Use of Vortex Generators to Manage Inlet-Engine Distortion Using Computational Fluid Dynamics
,” AIAA Paper No. 91-2474/NASA Technical Memorandum No. 104436.
58.
Wendt
,
B. J.
, and
Hingst
,
W. R.
, 1994, “
Measurements and Modelling of Flow Structure in the Wake of a Low Profile ‘Wishbone’ Vortex Generator
,”
32nd AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 94-0620,
Reno, Nevada
, 10–13 January.
59.
Bray
,
T. P.
, 1998,
A Parametric Study of Vane and Air-Jet Vortex Generators
. Eng.D. Thesis, Cranfield University College of Aeronautics.
60.
Cho
,
S.-Y.
, 1993, “
Three Dimensional Compressible Turbulent Flow Computations for a Diffusing S-Duct With/without Vortex Generators
,” Ph.D. thesis, Case Western Reserve University.
61.
Cho
,
S.-Y.
, and
Greber
,
I.
, 1994, “
Three Dimensional Compressible Turbulent Flow Computations for a Diffusing S-Duct With/without Vortex Generators
,” Paper No. NASA-CR-195390.
62.
Wendt
,
B. J.
,
Reichert
,
B. A.
, and
Foster
,
J. D.
, 1995, “
The Decay of Longitudinal Vortices Shed From Airfoil Vortex Generators
,” AIAA Paper No. 95–1797.
63.
Wendt
,
B. J.
, and
Reichert
,
B. A.
, 1996, “
The Modelling of Symmetric Airfoil Vortex Generators
,” AIAA Paper No. 96-0807/NASA/CR-198501.
64.
Wendt
,
B. J.
, and
Dudek
,
J. C.
, 1996, “
A Computational-Experimental Development of Vortex Generator use for a Transitioning S-Diffuser
,” NASA Technical Memorandum No. 107357.
65.
Wendt
,
B. J.
, 2001, “
Initial Circulation and Peak Vorticity Behavior of Vortices shed From Airfoil Vortex Generators
,” Paper No. NASA/CR-2001-211144.
66.
Wendt
,
B. J.
, 2004, “
Parametric Study of Vortices Shed from Airfoil Vortex Generators
,”
AIAA J.
,
42
(
11
), pp.
2185
2195
.
67.
The NPARC Alliance
, 2006,
Wind-US User’s Guide
,
NPARC
,
Tullahoma, Tennessee
.
68.
Dudek
,
J. C.
, 2005, “
An Empirical Model for Vane-Type Vortex Generators in a Navier-Stokes Code
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2005-1003,
Reno, Nevada
, 10–13 January.
69.
Dudek
,
J. C.
, 2006, “
Empirical Model for Vane-Type Vortex Generators in a Navier-Stokes Code
,”
AIAA J.
,
44
(
8
), pp.
1779
1789
.
70.
Törnblom
,
O.
, and
Johansson
,
A. V.
, 2007, “
A Reynolds Stress Closure Description of Separation Control with Vortex Generators in a Plane Asymmetric Diffuser
,”
Phys.Fluids
,
19
(
11
), p.
115108
.
71.
Nikolaou
,
I. G.
,
Politis
,
E. S.
, and
Chaviaropoulos
,
P. K.
, 2005, “
Modelling the Flow Around Airfoils Equipped With Vortex Generators Using a Modified 2D Navier-Stokes Solver
,”
Trans. ASME, J. Sol. Energy Eng.
,
127
, pp.
223
233
.
You do not currently have access to this content.