Fluidized beds are being used in practice to gasify biomass to create producer gas, a flammable gas that can be used for process heating. However, recent literature has identified the need to better understand and characterize biomass fluidization hydrodynamics, and has motivated the combined experimental-numerical effort in this work. A cylindrical reactor is considered and a side port is introduced to inject air and promote mixing within the bed. Comparisons between the computational fluid dynamics (CFD) simulations with experiments indicate that three-dimensional simulations are necessary to capture the fluidization behavior of the more complex geometry. This paper considers the effects of increasing side port air flow on the homogeneity of the bed material in a 10.2 cm diameter fluidized bed filled with 500-600 μm ground walnut shell particles. The use of two air injection ports diametrically opposed to each other is also modeled using CFD to determine their effects on fluidization hydrodynamics. Whenever possible, the simulations are compared to experimental data of time-average local gas holdup obtained using X-ray computed tomography. This study will show that increasing the fluidization and side port air flows contribute to a more homogeneous bed. Furthermore, the introduction of two side ports results in a more symmetric gas-solid distribution.

References

References
1.
Kunii
,
D.
, and
Levenspiel
,
O.
, 1991,
Fluidization Engineering
,
Butterworth-Heinemann
,
Boston, USA
.
2.
Cui
,
H.
, and
Grace
,
J. R.
, 2007,
“Fluidization of Biomass Particles: A Review of Experimental Multiphase Flow Aspects,”
Chem. Eng. Sci.
,
62
(
1–2
), pp.
45
55
.
3.
Ohman
,
M.
,
Pommer
,
L.
, and
Nordin
,
A.
, 2005,
“Bed Agglomeration Characteristics and Mechanisms during Gasification and Combustion of Biomass Fuels,”
Energy Fuels
,
19
(
4
), pp.
1742
1748
.
4.
Scala
,
F.
,
Chirone
,
R.
, and
Salatino
,
P.
, 2006,
“Combustion and Attrition of Biomass Charsin a Fluidized Bed,”
Energy Fuels
,
20
(
1
), pp.
91
102
.
5.
Chirone
,
R.
,
Miccio
,
F.
, and
Scala
,
F.
, 2006,
“Mechanism and Prediction of Bed Agglomeration during Fluidized Bed Combustion of Biomass Fuel: Effect of the Reactor Scale,”
Chem. Eng. J.
,
123
(
3
), pp.
71
80
.
6.
Huilin
,
L.
,
Yunhua
,
Z.
,
Ding
,
J.
,
Gidaspow
,
D.
, and
Wei
,
L.
, 2007,
“Investigation of Mixing/Segregation of Mixture Particles in Gas-Solid Fluidized Beds,”
Chem. Eng. Sci.
,
62
(
1–2
), pp.
301
317
.
7.
Nijenhuis
,
J.
,
Korbee
,
R.
,
Lensselink
,
J.
,
Kiel
,
J. H. A.
, and
van Ommen
,
J. R.
, 2007,
“A Method for Agglomeration Detection and Control in Full-Scale Biomass Fired Fluidized Beds,”
Chem. Eng. Sci.
,
62
(
1–2
), pp.
644
654
.
8.
Bartels
,
M.
,
Lin
,
W.
,
Nijenhuis
,
J.
,
Kapteijn
,
F.
, and
van Ommen
,
J. R.
, 2008,
“Agglomeration in Fluidized Beds at High Temperatures: Mechanisms, Detection and Prevention,”
Prog. Energy Combust. Sci.
,
34
(
5
), pp.
633
666
.
9.
Rajan
,
F.
, and
Christoff
,
J. D.
, 1982,
“Effects of Horizontal Jet Penetration on the Combustion of Coal in a Fluidized Bed,”
J. Energy
,
6
(
2
), pp.
125
131
.
10.
Chyand
,
C. S.
,
Chang
,
C. H.
, and
Chang
,
J. H.
, 1997,
“Gas Discharge Modes at a Single Horizontal Nozzle in a Two-Dimensional Fluidized Bed,”
Powder Technol.
,
90
(
1
), pp.
71
77
.
11.
Chen
,
L.
, and
Weinstein
,
H.
, 1993,
“Shape and Extent of the Void Formed by a Horizontal Jet in a Fluidized-Bed,”
AIChE J.
,
39
(
12
), pp.
1901
1909
.
12.
Xuereb
,
C.
,
Laguerie
,
C.
, and
Baron
,
T.
, 1991,
“Behavior of Horizontal or Inclined Continuous Jets Gas-Injected into a Fluidized Bed. Part I: Morphology of the Jets,”
Powder Technol.
,
67
(
1
), pp.
43
56
.
13.
Zenz
,
F. A.
, 1968,
“Bubble Formation and Grid Design,”
IChemE Symposium Series
,
30
, pp.
136
139
.
14.
Shakhova
,
N. A.
, 1968,
“Discharge of Turbulent Jets into a Fluidized Bed,”
J. Eng. Phys. Thermophys.
,
14
(
1
), pp.
32
36
. Available at http://www.springer link.com/content/nx4056w073123878/.
15.
Merry
,
J. M. D.
, 1971,
“Penetration of a Horizontal Gas Jet into a Fluidised Bed,”
Trans. Inst. Chem. Eng.
,
49
(
4
), pp.
189
195
.
16.
Hong
,
R.
,
Li
,
H.
,
Li
,
H.
, and
Wang
,
Y.
, 1997,
“Studies on the Inclined Jet Penetration Length on a Gas-Solid Fluidized Bed,”
Powder Technol.
,
92
(
3
), pp.
205
212
.
17.
Tyler
,
J.
, and
Mees
,
P.
, 1999,
“Using CFD to Model the Interaction of a Horizontal Feed Jet on Fluidized Bed Hydrodynamics,”
Second International Conference on CFD in the Minerals and Process Industries
,
CSIRO
,
Melbourne
, pp.
113
117
.
18.
Li
,
T.
,
Pougatch
,
K.
,
Salcudean
,
M.
, and
Grecov
,
D.
, 2008,
“Numerical Simulation of Horizontal Jet Penetration in a Three-Dimensional Fluidized Bed,”
Powder Technol.
,
184
, pp.
89
99
.
19.
Li
,
T.
,
Pougatch
,
K.
,
Salcudean
,
M.
, and
Grecov
,
D.
, 2009,
“Numerical Simulation of Single and Multiple Gas Jets in Bubbling Fluidized Beds,”
Chem. Eng. Sci.
,
64
, pp.
4884
4898
.
20.
Xie
,
N.
,
Battaglia
,
F.
, and
Pannala
,
S.
, 2008,
“Effects of using Two- Versus Three-Dimensional Computational Modeling of Fluidized Beds: Part I, Hydrodynamics,”
Powder Technol.
,
182
(
1
), pp.
1
13
.
21.
Deza
,
M.
,
Battaglia
,
F.
, and
Heindel
,
T. J.
, 2007,
“Computational Modeling of Biomass in a Fluidized Bed Gasifier,”
Proceedings of the 2007 ASME International Mechanical Engineering Congress and Exposition, IMECE
2007,
8
PART A, New York, NY, pp.
107
114
, Paper No. IMECE2007-43097.
22.
Deza
,
M.
,
Battaglia
,
F.
, and
Heindel
,
T. J.
, 2008,
“A Validation Study for the Hydrodynamics of Biomass in a Fluidized Bed,”
Proceedings of the 2008 ASME Fluids Engineering Division Summer Conference
, Paper No. FEDSM2008-55158.
23.
Deza
,
M.
,
Battaglia
,
F.
, and
Heindel
,
T. J.
, 2008,
“Approximating a Three-Dimensional Fluidized Bed with Two-Dimensional Simulations,”
Proceedings of the 2008 ASME International Mechanical Engineering Congress and Exposition
, Paper No. IMECE2008-66378.
24.
Min
,
J.
,
Drake
,
J. B.
,
Heindel
,
T. J.
, and
Fox
,
R. O.
, 2010,
“Experimental Validation of CFD Simulations of a Lab-Scale Fluidized-Bed Reactor with and without Side-Gas Injection,”
AIChE J.
,
56
(
6
), pp.
1434
1446
.
25.
Heindel
,
T. J.
,
Gray
,
J. N.
, and
Jensen
,
T. C.
, 2008,
“An X-ray System for Visualizing Fluid Flows,”
Flow Meas. Instrum.
,
9
(
2
), pp.
67
78
.
26.
Syamlal
,
M.
,
Rogers
,
W.
, and
O’Brien
,
T.
, 1993,
“MFIX Documentation: Theory Guide,”
Technical Note DOE/METC-
95
-
1013
and NTIS/DE95000031, National Energy Technology Laboratory, Department of Energy.
27.
Agrawal
,
K.
,
Loezos
,
P. N.
,
Syamlal
,
M.
, and
Sundaresan
,
S.
, 2001,
“The Role of Meso-Scale Structures in Rapid Gas-Solid Flows,”
J. Fluid Mech.
,
445
, pp.
151
185
.
28.
Lun
,
C. K.
,
Savage
,
S. B.
,
Jeffrey
,
D. J.
, and
Chepurniy
,
N.
, 1984,
“Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flowfield,”
J. Fluid Mech.
,
140
, pp.
223
256
.
29.
Huilin
,
L.
, and
Gidaspow
,
D.
, 2003,
“Hydrodynamics of Binary Fluidization in a Riser: CFD Simulation using Two Granular Temperatures,”
Chem. Eng. Sci.
,
58
(
16
), pp.
3777
3792
.
30.
Deza
,
M.
,
Franka
,
N. P.
,
Heindel
,
T. J.
, and
Battaglia
,
F.
, 2009,
“CFD Modeling and X-ray Imaging of Biomass in a Fluidized Bed,”
J. Fluids Eng.
,
131
(
11
), pp.
111303
1
-11.
31.
Syamlal
,
M.
, 1998,
“MFIX Documentation: Numerical Technique,” Technical Note DOE/MC31346-5824 and NTIS/DE98002029, National Energy Technology Laboratory
,
Department of Energy.
32.
Syamlal
,
M.
, 1998,
“High Order Discretization Methods for the Numerical Simulation of Fluidized Beds,”
Technical Note DOE/FETC/C-98/7305 and CONF-971113, Department of Energy.
33.
Johnson
,
P. C.
, and
Jackson
,
R.
, 1987,
“Frictional-Collision Constitutive Relations for Granular Materials with Application to Plane Shearing,”
J. Fluid Mech.
,
176
, pp.
67
93
.
34.
Reardon
,
J.
, 2007,
private communication.
35.
Franka
,
N.
, and
Heindel
,
T.
, 2009,
“Local Time-Averaged Gas Holdup in a Fluidized Bed with Side Air Injection using X-ray Computed Tomography,”
Powder Technol.
,
193
, pp.
69
78
.
36.
Taghipour
,
F.
,
Ellis
,
N.
, and
Wong
,
C.
, 2005,
“Experimental and Computational Study of Gas-Solid Fluidized Bed Hydrodynamics,”
Chem. Eng. Sci.
,
60
(
24
), pp.
6857
6867
.
37.
Du
,
W.
,
Bao
,
X.
,
Xu
,
J.
, and
Wei
,
W.
, 2006,
“Computational Fluid Dynamics (CFD) Modeling of Spouted Bed: Assessment of Drag Coefficient Correlations,”
Chem. Eng. Sci.
,
61
(
5
), pp.
1401
1420
.
38.
Cao
,
J.
,
Cheng
,
Z.
,
Fang
,
Y.
,
Jing
,
H.
,
Huang
,
J.
, and
Wang
,
Y.
, 2008,
“Simulation and Experimental Studies on Fluidization Properties in a Pressurized Jetting Fluidized Bed,”
Powder Technol.
,
183
(
1
), pp.
127
132
.
39.
Ahuja
,
G. N.
, and
Patwardhan
,
A. W.
, 2008,
“CFD and Experimental Studies of Solids Hold-Up Distribution and Circulation Patterns in Gas-Solid Fluidized Beds,”
Chem. Eng. J.
,
143
(
1-3
), pp.
147
160
.
You do not currently have access to this content.