Injection of water and aqueous polymer solutions in to the core of a trailing vortex was found to delay the inception of tip vortex cavitation (TVC). Optimal levels of mass injection reduced the inception cavitation number from 3.5 to 1.9, or a reduction of 45%. At the optimal fluxes, injection of water alone produced a reduction of 35%, and the addition of polymer solution led to a reduction of 45%. Stereo particle image velocimetry was employed to examine the flow fields in the region of TVC inception and infer the average core pressure, and planar PIV was used to examine the flow unsteadiness in this region. The time-averaged pressure coefficients for the vortex core pressure were estimated and compared to the pressure needed for TVC inception and full development. Measurement of flow variability in the TVC inception region indicated that relatively low fluxes of mass injection in the TVC roll-up region led to a substantial decrease in flow unsteadiness in the core region near the observed location of inception, and this corresponded to a substantial decrease in the inception pressure. Increased injection of water or polymer solutions led to a modest increase in the average vortex core radius, which was discernable in the measured pressure needed for developed cavitation.

References

References
1.
Arndt
,
R. E. A.
, 2002, “
Cavitation in Vortical Flow
,”
Annu. Rev. Fluid Mech.
,
34
, pp.
143
175
.
2.
Platzer
,
G. P.
, and
Souders
,
W. G.
, 1979, “
Tip Vortex Cavitation Delay With Application to Marine Lifting Surfaces. A Literature Survey
,” DTNSRDC Technical Report No. 79/051.
3.
Chatterjee
,
D.
, and
Arakeri
,
V. H.
, 2004, “
Some Investigations on the Use of Ultrasonics in Travelling Bubble Cavitation Control
,”
J. Fluid Mech.
,
504
, pp.
365
389
.
4.
Platzer
,
G. P.
, and
Souders
,
W. G.
, 1981, “
Tip Vortex Cavitation Characteristics and Delay of Inception on a Three-Dimensional Hydrofoil
,” DTNSRDC Technical Report No. 81/007.
5.
Fruman
,
D. H.
, and
Aflalo
,
S. S.
, 1989, “
Tip Vortex Cavitation Inhibition by Drag-Reducing Polymer Solutions
,”
J. Fluids Eng.
,
111
, pp.
211
215
.
6.
Fruman
,
D. H.
,
Pichon
,
T.
, and
Cerrutti
,
P.
, 1995, “
Effect of Drag Reducing Polymer Solution Ejection on Tip Vortex Cavitation
,”
J. Mar. Sci. Technol.
,
1
, pp.
13
23
.
7.
Chahine
,
G. L.
,
Frederick
,
G. F.
, and
Bateman
,
R. D.
, 1993, “
Propeller Tip Vortex Cavitation Suppression Using Selective Polymer Injection
,”
J. Fluids Eng.
,
115
, pp.
497
503
.
8.
Larsson
,
R. G.
,
Structure and Rheology of Complex Fluids
(
Oxford University Press
,
New York
, 1999).
9.
Winkel
,
E. S.
,
Oweis
,
G. F.
,
Vanapalli
,
S. A.
,
Dowling
,
D. R.
,
Perlin
,
M.
,
Solomon
M. J.
, and
Ceccio
,
S. L.
, 2009, “
High-Reynolds Number Turbulent Boundary Layer Friction Drag Reduction From Wall-Injected Polymer Solutions
,”
J. Fluid Mech.
,
621
, pp.
259
288
.
10.
Elbing.
,
B. R.
,
Dowling
,
D. R.
,
Perlin
,
M.
, and
Ceccio
,
S. L.
, 2010, “
Diffusion of Drag-reducing Polymer Solution Within a Rough Walled Boundary Layer
,”
Phys. Fluids
,
22
, 4., pp.
045102
.
11.
Gindroz
,
B.
, and
Briançon-Marjollet
,
L.
, 1992, “
Experimental Comparison Between Different Techiniques of Cavitation Nuclei Measurments
,”
Proc. Second International symposium on Propeller and Cavitation
,
Hangzhou
,
China
.
12.
Arndt
,
R. E. A.
,
Arakeri
,
V. H.
, and
Higuchi
,
H.
, 1991, “
Some Observations on Tip Vortex Cavitation
,”
J. Fluid Mech.
,
229
, pp.
269
289
.
13.
Fruman
,
D. H.
,
Dugue
,
C.
,
Pauchet
,
A.
,
Cerrutti
,
P.
, and
Brianson-Majollet
,
L.
, 1992, “
Tip Vortex Roll-up and Cavitation
,”
Proc. Nineteenth International Symposium on Naval Hydrodynamics
,
Seoul
,
Korea
, pp.
633
654
.
14.
Oweis
,
G. L.
, and
Ceccio
,
S. L.
, 2005, “
Instantaneous and Time-Averaged Flow Fields of Multiple Vortices in the Tip Region of a Ducted Propulsor
,”
Exp. Fluids
,
38
, pp.
615
636
.
15.
Liu
,
X.
, and
Katz
,
J.
, 2006, “
Instantaneous Pressure and Material Acceleration Measurements Using a Four-Exposure PIV System
,”
Exp. Fluids
,
41
, pp.
227
240
.
16.
Choi
,
J.
, and
Ceccio
,
S. L.
, 2007, “
Dynamics and Noise Emission From Vortex Cavitation Bubbles
,”
J. Fluid Mech.
,
575
, pp.
1
26
.
17.
Choi
,
J.
,
Hsiao
,
C.-T.
,
Chahine
,
G. L.
, and
Ceccio
,
S. L.
, 2009, “
Growth, Oscillation, and Collapse of Vortex Cavitation Bubbles
,”
J. Fluid Mech.
,
624
, pp.
255
279
.
18.
Briançon-Marjollet
,
L.
and
Merle
,
L.
, 1996, “
Inception, Development, and Noise of a Tip Vortex Cavitation
,”
Proc. Twenty first Symposium on Naval Hydrodynamics
,
Trondhiem
,
Norway
, pp.
851
864
.
19.
Fruman
,
D. H.
,
Perrot
,
P.
, and
Bouguechal
,
J.
, 1984, “
On the Swelling of Submerged Jets of Dilute and Semi-Dilute Polymer Solutions
,”
Chem. Eng. Commun.
,
27
, pp.
101
118
.
20.
Fruman
,
D. H.
,
Dugue
,
C.
, and
Cerrutti
,
P.
, 1991, “
Tip Vortex Roll-up and Cavitation
,”
Proc. Cavitation and Multiphase Flow Forum
, ASME-Fluids Engineering Division,
109
, pp.
43
48
.
21.
Tsai
,
G.-L.
, and
Yang
,
J.-T.
, 1993, “
Pressure Fluctuation in Correlation With Velocity Fluctuations in Turbulent Wake Flow
,”
Exp. Fluids
,
15
(
6
), pp.
462
463
.
You do not currently have access to this content.