A new variant of the SST k-ω model sensitized to system rotation and streamline curvature is presented. The new model is based on a direct simplification of the Reynolds stress model under weak equilibrium assumptions [York et al., 2009, “A Simple and Robust Linear Eddy-Viscosity Formulation for Curved and Rotating Flows,” International Journal for Numerical Methods in Heat and Fluid Flow, 19(6), pp. 745–776]. An additional transport equation for a transverse turbulent velocity scale is added to enhance stability and incorporate history effects. The added scalar transport equation introduces the physical effects of curvature and rotation on turbulence structure via a modified rotation rate vector. The modified rotation rate is based on the material rotation rate of the mean strain-rate based coordinate system proposed by Wallin and Johansson (2002, “Modeling Streamline Curvature Effects in Explicit Algebraic Reynolds Stress Turbulence Models,” International Journal of Heat and Fluid Flow, 23, pp. 721–730). The eddy viscosity is redefined based on the new turbulent velocity scale, similar to previously documented k-ɛ-υ2 model formulations (Durbin, 1991, “Near-Wall Turbulence Closure Modeling without Damping Functions,” Theoretical and Computational Fluid Dynamics, 3, pp. 1–13). The new model is calibrated based on rotating homogeneous turbulent shear flow and is assessed on a number of generic test cases involving rotation and/or curvature effects. Results are compared to both the standard SST k-ω model and a recently proposed curvature-corrected version (Smirnov and Menter, 2009, “Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term,” ASME Journal of Turbomachinery, 131, pp. 1–8). For the test cases presented here, the new model provides reasonable engineering accuracy without compromising stability and efficiency, and with only a small increase in computational cost.

References

References
1.
Gatski
,
T. B.
, and
Speziale
,
C. G.
, 1993,
“On Explicit Algebraic Stress Models for Complex Turbulent Flows,”
J. Fluid Mech.
,
254
, pp.
59
78
.
2.
Wallin
,
S.
, and
Johansson
,
A.
, 2000,
“An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows,”
J. Fluid Mech.
,
403
, pp.
89
132
.
3.
Shur
,
M. L.
,
Strelets
,
M. K.
,
Travin
,
A. K.
, and
Spalart
,
P. R.
, 2000,
“Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart-Shur Correction,”
AIAA J.
,
38
(
5
), pp.
784
792
.
4.
Pettersson-Reif
,
B. A.
,
Durbin
,
P. A.
, and
Ooi
,
A.
, 1999,
“Modeling Rotational Effects in Eddy-Viscosity Closures,”
Int. J. Heat Fluid Flow
,
20
, pp.
563
573
.
5.
York
,
W. D.
,
Walters
,
D. K.
, and
Leylek
,
J. H.
, 2009,
“A Simple and Robust Linear Eddy-Viscosity Formulation for Curved and Rotating Flows,”
Int. J. Numer. Methods Heat Fluid Flow
,
19
(
6
), pp.
745
776
.
6.
Girimaji
,
S. S.
, 1997,
“A Galilean Invariant Explicit Algebraic Reynolds Stress Model for Turbulent Curved Flows,”
Phys. Fluids
,
9
, pp.
1067
1077
.
7.
Wallin
,
S.
, and
Johansson
,
A. V.
, 2002,
“Modelling Streamline Curvature Effects in Explicit Algebraic Reynolds Stress Turbulence Models,”
Int. J. Heat Fluid Flow
,
23
, pp.
721
730
.
8.
Gatski
,
T. B.
, and
Jongen
,
T.
, 2000,
“Nonlinear Eddy Viscosity and Algebraic Stress Models for Solving Complex Turbulent Flows,”
Prog. Aerosp. Sci.
,
36
(
8
), pp.
655
682
.
9.
Wang
,
X.
, and
Thangam
,
S.
, 2006,
“Development and Application of an Anisotropic Two-Equation Model for Flows With Swirl and Curvature,”
ASME J. Appl. Mech.
,
73
, pp.
397
404
.
10.
Rumsey
,
L.
, and
Gatski
,
T. B.
, 2001,
“Isolating Curvature Effects in Computing Wall Bounded Turbulent Flows,”
AIAA Paper No. 0725.
11.
Spalart
,
P. R.
, and
Shur
,
M. L.
, 1997,
“On the Sensitization of Turbulence Models to Rotation and Curvature,”
Aerosp. Sci. Technol.
,
1
(
5
), pp.
297
302
.
12.
Menter
,
F. R.
, 1992,
“Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows,”
NASA Technical Memorandum, 103975
,
Ames Research Center
,
Moffett Field
.
13.
Dhakal
,
T. P.
, and
Walters
,
D. K.
, 2009,
“Curvature and Rotation Sensitive Variants of the K-Omega SST Turbulence Model,”
Paper No FEDSM2009-78397, Proceedings of ASME 2009 Fluids Engineering Division Summer Meeting
,
Vail, Colorado
.
14.
Durbin
,
P. A.
, 1991,
“Near-Wall Turbulence Closure Modeling without Damping Functions,”
Theor. Comput. Fluid Dyn.
,
3
, pp.
1
13
.
15.
Speziale
,
C. G.
,
Sarkar
,
S.
, and
Gatski
,
T. B.
, 1991,
“Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical Systems Approach,”
J. Fluid Mech.
,
227
, pp.
245
272
.
16.
Rotta
,
J. C.
, 1972,
“Recent Attempts to Develop a Generally Applicable Calculation Method for Turbulent Shear Flow Layers,”
AGARD Turbul. Shear Flows
,
11
, pp.
11
12
.
17.
Smirnov
,
P. E.
, and
Menter
,
F. R.
, 2009,
“Sensitization of the SST Turbulence Model to Rotation and Curvature by Applying the Spalart-Shur Correction Term,”
ASME J. Turbomach.
,
131
, pp.
1
8
.
18.
Bardina
,
J.
,
Ferziger
,
J. H.
, and
Reynolds
,
W. C.
, 1983,
“Improved Turbulence Models Based on Large-Eddy Simulation of Homogeneous, Incompressible Turbulent Flows,”
Stanford University Technical Report, TF-19.
19.
Kristoffersen
,
R.
, and
Andersson
,
H. I.
, 1993,
“Direct Numerical Simulation of Low Reynolds-Number Turbulent Flow in a Rotating Channel,”
J. Fluid Mech.
,
256
, pp.
163
197
.
20.
Monson
,
D. J.
,
Seegmiller
,
H. L.
,
McConnaughey
,
P. K.
, and
Chen
,
Y. S.
, 1990,
“Comparison of Experiment With Calculations Using Curvature-Corrected Zero and Two Equation Turbulence Models for a Two-Dimensional U-Duct,”
AIAA Paper No. 90-1484.
21.
Spalart
,
P. R.
, 2009,
“RANS Modelling into a Second Century,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
291
293
.
22.
Hirsch
,
C.
, and
Tartinville
,
B.
, 2009,
“Reynolds-Averaged Navier-Stokes Modelling for Industrial Applications and Some Challenging Issues,”
Int. J. Comput. Fluid Dyn.
,
23
(
4
), pp.
295
303
.
23.
Travin
,
A.
,
Shur
,
M.
,
Strelets
,
M.
, and
Spalart
,
P. R.
, 1999,
“Detached-Eddy Simulations Past a Circular Cylinder,”
Flow, Turbul. Combust.
,
63
, pp.
293
313
.
24.
Achenbach
,
E.
, 1968,
“Distribution of Local Pressure and Skin Friction Around a Circular Cylinder in Cross-Flow up to Re = 5 × 106,”
J. Fluid Mech.
,
34
(
4
), pp.
625
639
.
25.
Catalano
,
P.
,
Wang
,
M.
,
Iaccarino
,
G.
, and
Moin
,
P.
, 2003,
“Numerical Simulation of the Flow Around a Circular Cylinder at High Reynolds Numbers,”
Int. J. Heat Fluid Flow
,
24
, pp.
463
469
.
26.
Behnia
,
M.
,
Parneix
,
S.
, and
Durbin
,
P. A.
, 1998,
“Prediction of Heat Transfer in an Axisymmetric Turbulent Jet Impinging on a Flat Plate,”
Int. J. Heat Mass Transfer
,
41
(
12
), pp.
1845
1855
.
27.
Hanjaliác
,
K.
,
Popovac
,
M.
, and
Hadžiabdiác
,
M.
, 2004,
“A Robust Near-Wall Elliptic-Relaxation Eddy-Viscosity Turbulent Model for CFD,”
Int. J. Heat Fluid Flow
,
25
, pp.
1047
1051
.
28.
Baughn
,
J. W.
,
Hechanova
,
A.
, and
Yan
,
X.
, 1991,
“An Experimental Study of Entrainment Effects on the Heat Transfer From a Flat Plate Surface to a Heated Circular Impinging Jet,”
ASME J. Heat Transfer
,
113
, pp.
1023
1025
.
29.
Yan
,
X.
,
Baughn
,
J. W.
, and
Mesbah
,
M.
, 1992,
“The Effect of Reynolds Number on the Heat Transfer Distribution From a Flat Plate to an Impinging Jet,”
ASME Heat Transfer Div.
,
226
, pp.
1
7
.
You do not currently have access to this content.