Growing application and use of ceramic foams has intensified the necessity to determine a precise and inexpensive method for prediction of pressure drop through these materials. In this paper, a new experimental model is presented for pressure drop through ceramic foams. In order to measure pressure drop, a set up was made in which air flow rate and temperature varied. Effects of variation in temperature and flow velocity on the pressure drop were investigated through open-cell SiC and Al2O3 foams with different values of porosity and pore density. Results of this study revealed the leading role of parameters such as viscosity, porosity, density, velocity and mean hydraulic diameter of pores of foam. Since there are several parameters affecting the problem, dimensional analysis was adopted as a convenient approach. Euler number, porosity and two Reynolds numbers, one based on the pores’ diameter and the other one based on total bed length, have been shown to be important in the analysis. Finally, an empirical model is developed for the pressure drop which is based on dimensionless numbers.

References

References
1.
Richardson
,
J. T.
, and
Garrait
,
M.
, 2003, “
Carbon Dioxide Reforming With Rh and Pt-Re Catalysts Dispersed on Ceramic Foam Supports
,”
Appl. Catal., A
,
255
(
1
), pp.
69
82
.
2.
Groppi
,
G.
, and
Tronconi
,
E.
, 2000, “
Design of Novel Monolith Catalyst Supports for Gas/Solid Reactions With Heat Exchange
,”
Chem. Eng. Sci
,
55
(
12
), pp.
2161
2171
.
3.
Alie
,
C.
, and
Ferauche
,
F.
, 2006, “
Pd-Ag/SiO2 Xerogel Catalyst Forming by Impregnation on Alumina Foams
,”
Chem. Eng. J.
,
117
(
1
), pp.
13
22
.
4.
Schimmoeller
,
B.
, and
Schulz
,
H.
, 2006, “
Ceramic Foams Directly-Coated With Flame-Made V2O5/TiO2 for Synthesis of Phthalic Anhydride
,”
J. Catal.
,
243
(
1
), pp.
82
92
.
5.
Zhou
,
J.
,
Mercer
,
C.
, and
Soboyejo
,
W. O.
, 2002, “
An Investigation of the Microstructure and Strength of Open-Cell 6010 Aluminum Foam
,”
Metall. Mater. Trans.
,
33A
(
5
), pp.
1413
1427
.
6.
Agrafiotisa
,
C.
,
Mavroidisa
,
I.
,
Athanasios
,
G.
,
Hoffschmidtb
,
B.
,
Romerod
,
P. M.
, and
Fernandez-Quero
,
V.
, 2007, “
Evaluation of Porous Silicon Carbide Monolithic Honeycombs as Volumetric Receivers/Collectors of Concentrated Solar Radiation
,”
Sol. Energy Mater. Sol. Cells
,
91
, pp.
474
488
.
7.
Hoffschmidt
,
B.
,
Fernandez-Quero
,
V.
,
Konstandopoulos
,
A. G.
,
Mavroidis
,
I.
,
Romero
,
M.
, and
Stobbe
,
P.
, 2001, “
Development of Ceramic Volumetric Receiver Technology
,”
Proc. 5th Cologne Solar Symposium
,
DLR
,
Germany
, pp.
51
61
.
8.
Tong
,
T. W.
, and
Sathe
S. B.
, 1991, “
Heat Transfer Characteristics of Porous Radiant Burners
,”
J. Heat Trans.
,
113
, pp.
423
428
.
9.
Trimis
,
D.
, and
Durst
,
F.
, 1995, “
Combustion in a Porous Medium—Advances and Applications
,”
Proc. 3rd Int. Conference on Comb. Tech. for a Clean Environment
,
Lisbon
,
Portugal
, pp.
8.2
.
10.
Kaviany
,
M.
, 2001,
Principles of Heat Transfer in Porous Media
,
Springer
,
Berlin, Germany
.
11.
Bejan
,
A.
, and
Neild
,
D.
, 2006,
Convection in Porous Media
,
3rd ed.
,
Springer
,
New York, USA
.
12.
Moreira
,
E. A.
, and
Innocentini
,
M. D. M.
, 2004, “
Permeability of Ceramic Foams to Compressible and Incompressible Flow
,”
J. Eur. Ceram. Soc.
,
24
(
10-11
), pp.
3209
3218
.
13.
Richardson
,
J. T.
, and
Peng
,
Y.
, 2000, “
Properties of Ceramic Foam Catalyst Supports: Pressure Drop
,”
Appl. Catal., A
,
204
, pp.
19
32
.
14.
DuPlessis
,
J. P.
,
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
, 1994, “
Pressure Drop Prediction for Flow Through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
,
49
, pp.
3545
3553
.
15.
Lacroix
,
M.
,
Nguyen
,
P.
,
Schweich
,
D.
,
Huu
,
C. P
,
Savin-Poncet
,
S.
, and
Edouard
,
D.
, 2007, “
Pressure Drop Measurements and Modeling on SiC Foams
,”
Chem. Eng. Sci.
,
62
, pp.
3259
3267
.
16.
Fourie
,
J. G.
, and
Du Plessis
,
J. P.
, 2002, “
Pressure Drop Modeling in Cellular Metallic Foams
,”
Chem. Eng. Sci.
,
57
, pp.
2781
2789
.
17.
Despois
,
J. F.
, and
Mortensen
,
A.
, 2005, “
Permeability of Open-Cell Microcellular Materials
,”
Acta Mater.
,
53
, pp.
1381
1388
.
18.
Scheffler
,
M.
, and
Colombo
P.
, 2005,
Cellular Ceramic
,
Wiley-VCH
,
Morlenbach, Germany
.
19.
Dukhan
,
N.
, 2006, “
Correlations for the Pressure Drop for Flow Through Metal Foam
,”
Exp. Fluids
,
41
, pp.
665
672
.
20.
Edouard
,
D.
,
Ivanova
,
S.
,
Lacroix
,
M.
,
Vanhaecke
,
E.
,
Pham
,
C.
, and
Pham-Huu
,
C.
, 2009, “
Pressure Drop Measurements and Hydrodynamic Model Description of SiC Foam Composites Decorated With SiC Nano-Fiber
,”
Catal. Today
,
141
, pp.
403
408
.
21.
Dietrich
,
B.
,
Schabel
,
W.
,
Kind
,
M.
, and
Martin
,
H.
, 2009, “
Pressure Drop Measurements of Ceramic Sponges Determining the Hydraulic Diameter
,”
Chem. Eng. Sci.
,
64
, pp.
3633
3640
.
22.
Lévêque
,
J.
,
Rouzineau
,
D.
,
Prévost
,
M.
, and
Meyer
,
M.
, 2009, “
Hydrodynamic and Mass Transfer Efficiency of Ceramic Foam Packing Applied to Distillation
,”
Chem. Eng. Sci.
,
64
, pp.
2607
2616
.
23.
Garrido
,
G. I.
, and
Kraushaar-Czarnetzki
,
B.
, 2010, “
A General Correlation for Mass Transfer in Isotropic and Anisotropic Solid Foams
,”
Chem. Eng. Sci.
,
65
, pp.
2255
2257
.
24.
Ashby
,
M. F.
, and
Evans
,
A. G.
, 2000,
Metal Foams: A Design Guide
,
Butterworth–Heinemann
,
Boston, MA
.
25.
White
,
F. M.
, 1997,
Fluid Mechanics, 4th Edition
,
McGraw-Hill
,
New York, USA
.
26.
Taylor
,
J. R.
, 1997,
An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements
,
2nd ed.
,
University Science Books
,
California, USA
.
27.
Azzi
,
W.
,
Roberts
,
W. L.
, and
Rabiei
,
A.
, 2007, “
Study on Pressure Drop and Heat Transfer in Open Cell Metal Foams for Jet Engine Applications
,”
J. Mater. Design
,
28
, pp.
569
574
.
28.
Foshan Ceramic Research Institute
, 2011, “
Foshan Ceramic Research Institue and Jin Gang Group
,” www.foshan.chwww.foshan.ch
29.
Pereira da Silva
,
W.
, and
Pereira da Silva
C.
, 2011,
LAB Fit
,
Universidade Federal de Campina Grande
,
Brazil
.
You do not currently have access to this content.