The turbulent flow within a cylinder‐on‐cone cyclone is highly three‐dimensional and our knowledge of this flow has yet to be improved. This work aims to improve our understanding of the flow structure, with special attention to the swirl number effect. The three velocity components of the flow were measured using LDA and PIV. The Reynolds number, based on the inlet velocity and the cyclone cylindrical chamber diameter, was 7.4 × 104, and the swirl number examined was from 2.4 to 5.3. Three regions of the flow have been identified after careful analysis of the data, which are referred to as the core, the outer and the wall‐affected regions, respectively; each is distinct from another in terms of the vorticity concentration, frequency of quasi‐periodical coherent structure, the probability density function, and mean and variance of velocities. It has been found that the flow, including its Strouhal numbers and radial distributions of the mean and fluctuating velocities, depends considerably on the swirl number.

References

References
1.
Biffin
,
M.
,
Syred
,
N.
, and
Sage
,
P.
, 1984, “
Enhanced Collection Efficiency for Cyclone Dust Separators
,”
Chem. Eng. Res. Des.
,
62
(
4
), pp.
261
265
.
2.
Bose
,
P. K.
,
Roy
,
K.
,
Mukhopadhya
,
N.
, and
Chakraborty
,
R. K.
, 2010, “
Improved Theoretical Modeling of a Cyclone Separator as a Diesel Soot Particulate Emission Arrester
,”
Int. J. Automot. Technol.
,
11
, pp.
1
10
.
3.
Chanaud
,
R. C.
, 1965, “
Observations of Oscillatory Motion in Certain Swirling Flows
,”
J. Fluid Mech.
,
21
, pp.
111
127
.
4.
Cassidy
,
J. J.
, and
Falvey
,
H. T.
, 1970, “
Observations of Unsteady Flow Arising After Vortex Breakdown
,”
J. Fluid Mech.
,
41
, pp.
727
736
.
5.
Gouldin
,
F. C.
,
Halthore
,
R. N.
, and
Vu
,
B. T.
, 1984, “
Periodic Oscillations Observed in Swirling Flows With and Without Combustion
,”
Proc. of 20th Symposium (International) on Combustion
,
The Combustion Institute
,
Philadelphia
, pp.
269
276
.
6.
Harvey
,
J. K.
, 1962, “
Some Observations of the Vortex Breakdown Phenomenon
,”
J. Fluid Mech.
,
45
, pp.
585
592
.
7.
Sarpkaya
,
T.
, 1971, “
On Stationary and Traveling Vortex Breakdown
,”
J. Fluid Mech.
,
45
, pp.
545
559
.
8.
Toh
,
I. K.
,
Honnery
,
D.
, and
Soria
,
J.
, 2010, “
Axial Plus Tangential Entry Swirling Jet
,”
Exp. Fluids
,
48
, pp.
309
325
.
9.
Alekseenko
,
S. V.
,
Kuibin
,
P. A.
,
Okulov
,
V. L.
, and
Shtork
,
S. I.
, 1999, “
Helical Vortices in Swirl Flow
,”
J. Fluid Mech.
,
382
, pp.
195
243
.
10.
Chao
,
Y. C.
,
Leu
,
J. H.
,
Hung
,
Y. F.
, and
Lin
,
C. K.
, 1991, “
Downstream Boundary Effects on the Spectral Characteristics of a Swirling Flowfield
,”
Exp. Fluids
,
10
, pp.
341
348
.
11.
Lu
,
X.
,
Wang
,
S. W.
,
Sung
,
H. G.
,
Hsieh
,
S. Y.
, and
Yang
,
V.
, 2005, “
Large‐Eddy Simulations of Turbulent Swirling Flows Injected into a Dump Chamber
,”
J. Fluid Mech.
,
527
, pp.
171
195
.
12.
Zhou
,
L. X.
, and
Soo
,
S. L.
, 1990, “
Gas‐Solid Flow and Collection of Solids in a Cyclone Separator
,”
Powder Technol.
,
63
, pp.
45
53
.
13.
Hsieh
,
K. T.
, and
Rajamani
,
R. K.
, 1991, “
Mathematical Model of the Hydrocyclone Based on Physics of Fluid Flow
,”
AIChE J.
,
37
, pp.
735
746
.
14.
Wong
,
W. O.
,
Wang
,
X. W.
, and
Zhou
,
Y.
, 2007, “
Turbulent Flow Structure in a Cylinder‐On‐Cone Cyclone
,”
J. Fluids Eng.
,
129
, pp.
1179
1185
.
15.
Cristea
,
E. D.
,
Malfa
,
E.
, and
Coghe
,
A.
, 1994, “
3‐D Simulation and Experiments of Cement Rotary Kiln Preheater Top Cyclone
,” Proceedings of Fluent European User’s Group Meeting, Harrogate, U. K., C54.
16.
Derksen
,
J.
, 2003, “
Separation Performance Predictions of a Sairmand High‐Efficiency Cyclone
,”
AIChE J.
,
49
, pp.
1359
1371
.
17.
Derksen
,
J.
, and
Van den Akker
,
H. E. A.
, 2000, “
Simulation of Vortex Core Precession in a Reverse‐Flow Cyclone
,”
AIChE J.
,
46
, pp.
1317
1331
.
18.
Hoekstra
,
A. J.
,
Israel
,
A. T.
,
Derksen
,
J. J.
, and
Van den Akker
,
H. E. A.
, 1999, “
An Experimental and Numerical Study of Turbulent Swirling Flow in Gas Cyclones
,”
Chem. Eng. Sci.
,
54
, pp.
2055
2065
.
19.
Solero
,
G.
, and
Coghe
,
A.
, 2002, “
Experimental Fluid Dynamic Characterization of a Cyclone Chamber
,”
Exp. Therm. Fluid Sci.
,
27
, pp.
87
96
.
20.
Hoekstra
,
A. J.
, 2000,
“Gas Flow Field and Collection Efficiency of Cyclone Separators,”
Ph.D. thesis,
Delft University of Technology
.
21.
Wang
,
Z. J.
,
Zhou
,
Y.
,
Huang
,
J. F.
, and
Xu
,
Y. L.
, 2005, “
Fluid Dynamics Around an Inclined Cylinder With Running Water Rivulets
,”
J. Fluids Struct.
,
21
, pp.
49
64
.
22.
So
,
R. M. C.
,
Zhou
,
Y.
, and
Liu
,
M. H.
, 2000, “
Free Vibrations of an Elastic Cylinder in a Cross Flow and Their Effects on the Near Wake
,”
Exp. Fluids
,
29
, pp.
130
144
.
23.
Hoffmann
,
A. C.
, and
Stein
,
L. E.
, 2002,
Gas Cyclones and Swirl Tubes, Principles, Design and Operation
,
Springer
,
New York.
24.
Hoekstra
,
A. J.
,
Israel
,
A. T.
,
Derksen
,
J. J.
, and
Van den Akker
,
H. E. A.
, 1998,
“The Application of Laser Diagnostics to Cyclonic Flow With Vortex Precession,”
Int. Symp. Applications of Laser Techniques to Fluid Mechanics
,
Lisbon
.
25.
Wang
,
Z. J.
, and
Zhou
,
Y.
, 2005, “
Vortex Interactions in a Two Side‐by‐Side Cylinder Near‐Wake
,”
Int. J. Heat Fluid Flow
,
26
, pp.
362
377
.
You do not currently have access to this content.