Using a code developed to compute high Reynolds number viscoelastic flows, polymer injection from the upstream stagnation point of a circular cylinder is modeled at Re=3900. Polymer stresses are represented using the FENE-P constitutive equations. By increasing polymer injection rates within realistic ranges, significant near wake stabilization is observed. Rather than a turbulent detached shear layer giving way to a chaotic primary vortex (as seen in Newtonian flows at high Re), a much more coherent primary vortex is shed, which possesses an increased core pressure as well as a reduced level of turbulent energy.

References

References
1.
Sureshkumar
,
R.
,
Beris
,
A. N.
, and
Handler
,
R. A.
, 1997, “
Direct Numerical Simulation of the Turbulent Channel Flow of a Polymer Solution
,”
Phys. Fluids
,
9
(
3
), pp.
743
755
.
2.
White
,
C.
, and
Mungal
,
G.
, 2008, “
Mechanics and Prediction of Turbulent Drag Reduction With Polymer Additives
,”
Annu. Rev. Fluid Mech.
,
40
, pp.
235
256
.
3.
Winkel
,
E. S.
,
Oweis
,
G. F.
,
Vanapalli
,
S. A.
,
Dowling
,
D. R.
,
Perlin
,
M.
,
Soloman
,
M. J.
, and
Ceccio
,
S. L.
, 2009, “
High-Reynolds-Number Turbulent Boundary Layer Friction Drag Deduction From Wall-Injected Polymer Solutions
,”
J. Fluid Mech.
,
621
, pp.
259
288
.
4.
Richter
,
D.
,
Iaccarino
,
G.
, and
Shaqfeh
,
E. S. G.
, 2010, “
Simulations of Three-Dimensional Viscoelastic Flows Past a Circular Cylinder at Moderate Reynolds Numbers
,”
J. Fluid Mech.
,
651
, pp.
415
442
.
5.
Richter
,
D.
,
Shaqfeh
,
E. S. G.
, and
Iaccarino
,
G.
, 2011, “
Floquet Stability Analysis of Viscoelastic Flow Over a Cylinder
,”
J. Non-Newtonian Fluid Mech.
,
166
, pp.
554
565
.
6.
Richter
,
D.
,
Iaccarino
,
G.
, and
Shaqfeh
,
E. S. G.
, 2011, “
Effects of Viscoelasticity in the High Reynolds Number Cylinder Wake
,” J. Fluid Mech., submitted.
7.
Dimitropoulos
,
C. D.
,
Dubief
,
Y.
,
Shaqfeh
,
E. S. G.
, and
Moin
,
P.
, 2006, “
Direct Numerical Simulation of Polymer-Induced Drag Reduction in Turbulent Boundary Layer Flow of Inhomogeneous Polymer Solutions
,”
J. Fluid Mech.
,
566
, pp.
153
162
.
8.
Beris
,
A. N.
, and
Edwards
,
B. J.
, 1994,
Thermodynamics of Flowing Systems With Internal Microstructure
,
Oxford University Press
,
New York
.
9.
Dubief
,
Y.
,
Terrapon
,
V. E.
,
White
,
C. M.
,
Shaqfeh
,
E. S. G.
,
Moin
,
P.
, and
Lele
,
S. K.
, 2005, “
New Answers on the Interaction Between Polymers and Vortices in Turbulent Flows
,”
Flow, Turbul. Combust.
,
74
(
4
), pp.
311
329
.
10.
Cadot
,
O.
, and
Lebey
,
M.
, 1998, “
Shear Instability Inhibition in a Cylinder Wake by Local Injection of a Viscoelastic Fluid
,”
Phys. Fluids
,
11
(
2
), pp.
494
496
.
11.
Cadot
,
O.
, and
Kumar
,
S.
, 2000, “
Experimental Characterization of Viscoelastic Effects on Two- and Three-Dimensional Shear Instabilities
,”
J. Fluid Mech.
,
416
, pp.
151
172
.
12.
Bloor
,
M. S.
, 1964, “
The Transition to Turbulence in the Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
19
, pp.
290
304
.
13.
Prasad
,
A.
, and
Williamson
,
C. H. K.
, 1997, “
The Instability of the Shear Layer Separating From a Bluff Body
,”
J. Fluid Mech.
,
333
, pp.
375
402
.
14.
Chahine
,
G. L.
,
Frederick
,
G. F.
, and
Bateman
,
R. D.
, 1993, “
Propeller Tip Vortex Cavitation Suppression Using Selective Polymer Injection
,”
J. Fluids Eng.
,
115
, pp.
497
503
.
15.
Fruman
,
D. H.
,
Pichon
,
T.
, and
Cerrutti
,
P.
, 1995, “
Effect of a Drag-Reducing Polymer Solution Ejection on Tip Vortex Cavitation
,”
J. Mar. Sci. Technol.
,
1
, pp.
13
23
.
16.
Yakushiji
,
R.
,
Chang
,
N. A.
, and
Ceccio
,
S. L.
, 2008, “
Tip Vortex Cavitation Suppression by Water and Polymer Injection
,”
27th Symposium on Naval Hydrodynamics
, Seoul, Korea, October 5–10, 2008.
You do not currently have access to this content.