Swirl stabilized combustion is a technology which, for stationary combustion, consumes more than 70 to 80% of the world’s fossil fuels. There have been many reviews of this technology, but there are still many gaps in understanding. This paper focuses on the general characteristics of a 100kW swirl burner, originally designed for poor quality fuels, in terms of flame characteristic, length and pressure fluctuations, to give a relative measure of the propensity of the system to respond to outside perturbations. Studied effects include swirl number, symmetry of the swirl flow system, type of fuel injector and mode of fuel injection. A range of techniques, including High Speed Photography (HSP), Particle Image Velocimetry (PIV) and fluctuating pressure measurements were used to create flame maps, flame length detail, and relative pressure amplitudes graphs. The results are discussed in the context of potential oscillations and coupling mechanisms including the effect of the precessing vortex core (PVC), recirculation and shear flow instabilities.

References

References
1.
Gupta
,
A. K.
,
Lilley
,
D. J.
, and
Syred
,
N.
, 1984,
Swirl Flows
,
Abacus Press
,
Tunbridge Wells, United Kingdom
.
2.
Syred
,
N.
, and
Beer
,
J.M.
, 1974, “
Combustion in Swirling Flow: A Review
,”
Combust. Flame
,
23
, pp.
143
201
.
3.
Syred
,
N.
, 2006, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.
4.
Vanoverberghe
,
K.
, 2004, “
Flow, Turbulence and Combustion of Premixed Swirling Jet Flame
,” Ph.D. thesis, Faculty of Engineering, Katholieke Universiteit Leuven, Belgium.
5.
Coghe
,
A.
,
Solero
,
G.
, and
Scribano
,
G.
, 2004, “
Recirculation Phenomena in a Natural Gas Swirl Combustor
,”
Exp. Therm Fluid Sci.
,
28
, pp.
709
714
.
6.
Valera-Medina
,
A.
, 2009, “
Coherent Structures and Their Effects on Processes Occurring in Swirl Combustors
,” Ph.D. thesis, Cardiff University, Wales, United Kingdom.
7.
Paschereit
,
C.
, and
Gutmark
,
E.
, 2008, “
Enhanced Stability and Reduced Emissions in an Elliptic Swirl-Stabilized Burner
,”
AIAA J
,
46
(
5
), pp.
1063
1071
.
8.
Kuhn
,
S.
,
Wagner
,
C.
, and
von Rohr
,
P.
, 2006, “
Influence of Wavy Surfaces on Coherent Structures in a Turbulent Flow
,”
Exp. Fluids
,
43
(
2–3
), pp.
251
259
.
9.
Claypole
,
T.
, and
Syred
,
N.
, 1981, “
The Effect of Swirl Burner Aerodynamics on NOx Formation
,”
18th Int. Symposium., Combust.
,
The Combustion Institute
,
Pittsburgh, USA
, pp.
81
90
.
10.
Froud
,
D.
,
O’Doherty
,
T.
, and
Syred
,
N.
, 1995, “
Phase Averaging of the Precessing Vortex Core in a Swirl Burner Under Piloted and Premixed Combustion Conditions
,”
Combust. Flame
,
100
(
3
), pp.
407
412
.
11.
Lucca-Negro
,
O.
, and
O’Doherty
,
T.
, 2001, “
Vortex Breakdown: A Review
,”
Prog. En Combust. Sci.
,
27
(
4
), p.
431
481
.
12.
Sarpkaya
,
T.
, 1971, “
On Stationary and Travelling Vortex Breakdown
,”
J. Fluid Mech.
,
45
(
3
), p.
545
559
.
13.
Bradley
,
D.
,
Gaskell
,
P.
,
Gu
,
X.
,
Lawes
,
M.
, and
Scott
,
M.
, 1998, “
Premixed Turbulent Flame Instability and no Formation in a Lean Burn Swirl Burner
,”
Combust. Flame
,
115
, pp.
515
538
.
14.
Lee
,
S.
,
Seo
,
S.
,
Broda
,
J.
,
Pal
,
S.
, and
Santoro
,
R.
, 2000, “
An Experimental Estimation of Mean Reaction Rate and Flame Structure During Combustion Instability in a Lean Premixed Gas Turbine Combustor
,”
Proc. Combust. Inst.
,
28
, pp.
775
782
.
15.
O’Doherty
,
T.
, and
Gardner
,
R.
, 2005, “
Turbulent Length Scales in an Isothermal Swirling Flow
,”
The 8th Symposium on Fluid Control
,
Measurement and Visualization
,
Chengdu, China
, pp.
6
.
16.
Bouremel
,
Y.
,
Yianneskis
,
M.
, and
Ducci
,
A.
, 2008, “
Vorticity and Strain Dynamics for Vortex Ring Mixing Process
,”
14th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
.
17.
Malalasekera
,
W.
,
Ranga-Dinesh
,
K. K. J.
,
Ibrahim
,
S. S.
, and
Masri
,
A.R.
, 2008, “
LES of Recirculation and Vortex Breakdown in Swirling Flames
,”
Combust. Sci. Tech.
,
180
, pp.
809
832
.
18.
Lafay
,
Y.
,
Taupin
,
B.
,
Martins
,
G.
,
Cabot
,
G.
,
Renou
,
B.
, and
Boukhalfa
,
A.
, 2006, “
Experimental Study of Biogas Combustion Using a Gas Turbine Configuration
,”
Exp. Fluids
,
43
(
2–3
), pp.
395
410
.
19.
Lieuwen
,
T.
, and
Yang
,
V.
, 2005,
Combustion Instabilities in Gas Turbine Engines
,
AIAA, Progress in Astronautics and Aeronautics
,
210
,
U.S.A
.
20.
Huang
,
Y.
, and
Yang
,
V.
, 2005, “
Modelling and Control of Combustion Dynamics in Lean Premixed Swirl Stabilized Combustors
,”
6th Symposium on Smart Control of Turbulence
,
Japan
, pp.
1
21
.
21.
Valera-Medina
,
A.
,
Syred
,
N.
, and
Griffiths
,
A.
, 2009, “
Visualization of Isothermal Large Coherent Structures in a Swirl Burner
,”
Combust. Flame
,
156
(
9
), pp.
1723
1734
.
22.
Al-Abdeli
,
Y.
, and
Masri
,
A.
, 2007, “
Turbulent Swirling Natural Gas Flames: Stability Characteristics, Unsteady Behaviour and Vortex Breakdown
,”
Combust. Sci. Tech.
,
179
, pp.
207
225
.
23.
Sadiki
,
A.
,
Maltseva
,
A.
,
Wegnera
,
B.
,
Flemminga
,
F.
,
Kempfa
,
A.
, and
Janickaa
,
J.
, 2006, “
Unsteady Methods (URANS and LES) for Simulation of Combustion Systems
,”
Int. J. Therm. Sci.
,
45
(
8
), pp.
760
773
.
24.
Freitag
,
M.
,
Kleina
,
M.
,
Gregora
,
M.
,
Geyera
,
D.
,
Schneidera
,
C.
,
Dreizlera
,
A.
, and
Janicka
,
J.
, 2006, “
Mixing Analysis of a Swirling Recirculating Flow Using DNS and Experimental Data
,”
Int. J. Heat Fluid Flow
,
27
(
4
), pp.
636
643
.
25.
Selle
,
L.
,
Benoit
,
L.
,
Poinsot
,
T.
,
Nicoud
,
F.
, and
Krebs
,
W.
, 2006, “
Joint Use of Compressible Large-eddy Simulation and Helmholtz Solvers for the Analysis of Rotating Modes in an Industrial Swirled Burner
,”
Combust. Flame
,
145
(
1–2
), pp.
194
205
.
26.
Jochmann
,
P.
, 2006, “
Numerical Simulation of a Precessing Vortex Breakdown
,”
Int. J. Heat Fluid Flow
,
27
, pp.
192
203
.
27.
Roux
,
S.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Meier
,
U.
, and
Bérat
,
C.
, 2005, “
Studies of Mean and Unsteady Flow in a Swirled Combustor Using Experiments, Acoustic Analysis and Large-eddy Simulations
,”
Combust. Flame
,
141
, pp.
40
54
.
28.
Davidson
,
P.
, 2004,
Turbulence: An Introduction for Scientists and Engineers
,
Oxford University Press
,
United Kingdom
, pp.
678
.
29.
Pope
,
S.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
United Kingdom
, pp.
806
.
30.
Wang
,
S.
, and
Rusak
,
Z.
, 1997, “
The Dynamics of a Swirling Flow in a Pipe and Transition to Axisymmetric Vortex Breakdown
,”
J. Fluid Mech.
,
340
, pp.
177
223
.
31.
Rusak
,
Z.
,
Whiting
,
C. H.
, and
Wang
,
S.
, 1998, “
Axisymmetric Breakdown of a Q-Vortex in a Pipe
,”
AIAA J.
,
36
(
10
), pp.
1848
1853
.
32.
Mattner
,
T. W.
,
Joubert
,
P. N.
, and
Chong
,
M.S.
, 2002, “
Vortical Flow. Part 1. Flow Through a Constant-Diameter Pipe
,”
J. Fluid Mech.
,
463
, pp.
259
291
.
33.
Aleseenko
,
S.
,
Kuibin
,
P.
,
Okulov
,
V.
, and
Shtork
,
S.
, 1999, “
Helical Vortex in Swirl Flow
,”
J. Fluid Mech.
,
382
, pp.
195
243
.
34.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K. U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufman
,
P.
, and
Veynante
,
D.
, 2004, “
Compressible Large-eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
,
137
, pp.
489
505
.
35.
Schmitt
,
P.
,
Poinsot
,
T.
,
Schuermans
,
B.
, and
Geigle
,
K. P.
, 2007, “
Large Eddy Simulation and Experimental Study of Heat Transfer, Nitric Oxide Emissions and Combustion Instability in a Swirled Turbulent High Pressure Burner
,”
J. Fluid Mech.
,
520
, pp.
17
46
.
36.
Cala
,
E.
,
Fernandes
,
C.
,
Heitor
,
M.
, and
Shtork
,
S.
, 2006, “
Coherent Structures in Unsteady Swirling Jet Flows
,”
Exp. Fluids
,
40
, pp.
267
276
.
37.
Farber
,
J.
,
Koch
,
R.
,
Bauer
,
H.
,
Krebs
,
W.
, and
Hase
,
M.
, 2008, “
The Effects of Piloting and Liner Boundary Conditions on Flame Locations and Stability Margins of an Industrial Size Premixed Flame
,”
8th European Conference on Industrial Furnaces and Boilers
,
Estoril, Portugal
.
38.
Brundish
,
K.
,
Miller
,
M.
,
Morgan
,
L.
, and
Wheatley
,
A.
, 2007, “
Variable Fuel Placement Injector Development
,”
Advanced Combustion and Aerothermal Technologies, NATO Science for Peace and Security Series
,
Springer
, pp.
425
444
.
39.
Vaniershot
,
M.
,
Persoons
,
T.
, and
Van den Bulck
,
E.
, 2008, “
An Eulerian Time Filtering Technique to Study Large Scale Transient Flow Phenomena
,”
14th Int. Simp. on Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
.
40.
Shtork
,
S.
,
Viera
,
N.
, and
Fernandes
,
E.
, 2008, “
On the Identification of Helical Instabilities in a Reacting Swirling Flow
,”
Fuel
,
87
, pp.
2314
2321
.
41.
Valera-Medina
,
A.
,
Syred
,
N.
, and
Griffiths
,
A.
, 2011, “
Central Recirculation Zone Analysis in an Unconfined Tangential Swirl Burner with Varying Degrees of Premixing
,”
Exp. Fluids.
(in press).
42.
Griebel
,
P.
,
Boschek
,
E.
, and
Jansohn
,
P.
, 2007, “
Lean Blowout Limits and NOx Emissions of Turbulent, Lean Premixed, Hydrogen-enriched Methane/air Flames at High Pressure
,”
J. Eng. Gas Turbines Power
,
129
, pp.
404
410
.
43.
Griffiths
,
D.
,
Stirling
,
W. D.
,
Weldon
,
L.
, 1998,
Understanding Data: Principles and Practice of Statistics
,
Wiley
,
United States
.
44.
Rusak
,
Z.
,
Choi
,
J. J.
, and
Lee
,
J. H.
, 2007, “
Bifurcation and Stability of Near-Critical Compressible Swirling Flows
,”
Phys. Fluids
,
19
, pp.
1
13
.
45.
Rusak
,
Z.
,
Kapila
,
A. K.
, and
Choi
,
J. J.
, 2002, “
Effect of Combustion on Near Critical Swirling Flow
,”
Combust. Theory Model
,
6
, pp.
625
645
.
46.
Sohn
,
K.
,
H.
Rusak
,
Z.
,
Kapila
,
A. K.
, 2006, “
Effect of Near-Critical Swirl of the Burke-Schumann Reaction Sheet
,”
J. Eng. Math.
,
54
, pp.
181
196
.
47.
Umeh
,
C. O. U.
,
Rusak
,
Z.
,
Gutmark
,
E. J.
, 2009, “
Experimental Study of Reaction and Vortex Breakdown in Swirl Stabilized Combustor
,” ASME Paper No. GT2009-60183.
You do not currently have access to this content.