In order to enhance the aggressive intensity of a cavitating jet for practical applications, the effect of the geometry of the nozzle through which the jet is driven on the aggressive intensity was investigated. The nozzle under test was cylindrical and consisted of a plate and a cap with a hole bored through it. The aggressive intensity of the jet was estimated by the erosion suffered by pure aluminum test specimens. The parameters varied were the bore diameter, D, and length, L, the standoff distance, the nozzle throat diameter, d, and the upstream and downstream pressures of the nozzle. The mass loss at the optimum standoff distance, where the mass loss was at a relative maximum, was found for each bore diameter and length, and then the optimum bore diameter and length were obtained. The optimum ratio of d : D : L was shown to be 1 : 8 : 8, and this was the optimum for both d =1 mm and d =2 mm. It was also the optimum ratio for upstream pressures of 15 MPa and 30 MPa, and downstream pressures of 0.1 MPa and 0.42 MPa.

References

References
1.
Soyama
,
H.
,
Yamauchi
,
Y.
,
Ikohagi
,
T.
,
Oba
,
R.
,
Sato
,
K.
,
Shindo
,
T.
, and
Oshima
,
R.
, 1996, “
Marked Peening Effects by Highspeed Submerged-Water-Jets – Residual Stress Change on SUS304
,”
J. Jet Flow Eng.
,
13
(
1
), pp.
25
32
.
2.
Hirano
,
K.
,
Enomoto
,
K.
,
Hayashi
,
E.
, and
Kurosawa
,
K.
, 1996, “
Effects of Water Jet Peening on Corrosion Resistance and Fatigue Strength of Type 304 Stainless Steel
,”
J. Soc. Mater. Sci. Japan
,
45
(
7
), pp.
740
745
.
3.
Soyama
,
H.
,
Park
,
J. D.
, and
Saka
,
M.
, 2000, “
Use of Cavitating Jet for Introducing Compressive Residual Stress
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
83
89
.
4.
Soyama
,
H.
,
Macodiyo
,
D. O.
,
Mall
,
S.
, 2004, “
Compressive Residual Stress into Titanium Alloy Using Cavitation Shotless Peening Method
,”
Tribol. Lett.
,
17
(
3
), pp.
501
504
.
5.
Soyama
,
H.
, 2004, “
Introduction of Compressive Residual Stress Using a Cavitating Jet in Air
,”
ASME J. Eng. Mater. Technol.
,
126
(
1
), pp.
123
128
.
6.
Qin
,
M.
,
Ju
,
D.
Y., and
Oba
,
R.
, 2006, “
Investigation of Influence of Incident Angle on the Process Capability of Water Cavitation Peening
,”
Surf. Coat. Technol.
,
201
(
3-4
), pp.
1409
1413
.
7.
Grinspan
,
A. S.
, and
Gnanamoorthy
,
R.
, 2007, “
Effect of Nozzle Traveling Velocity on Oil Cavitation Jet Peening of Aluminum Alloy, AA6063-T6
,”
ASME J. Eng. Mater. Technol.
,
129
(
4
), pp.
609
614
.
8.
Soyama
,
H.
, 2000, “
Improvement in Fatigue Strength of Silicon Manganese Steel SUP7 by Using a Cavitating Jet
,”
JSME Inter. J.
,
43A
(
2
), pp.
173
178
.
9.
Soyama
,
H.
,
Kusaka
,
T.
, and
Saka
,
M.
, 2001, “
Peening by the Use of Cavitation Impacts for the Improvement of Fatigue Strength
,”
J. Mater. Sci. Lett.
,
20
(
13
), pp.
1263
1265
.
10.
Soyama
,
H.
,
Saito
,
K.
, and
Saka
,
M.
, 2002, “
Improvement of Fatigue Strength of Aluminum Alloy by Cavitation Shotless Peening
,”
ASME J. Eng. Mater. Technol.
,
124
(
2
), pp.
135
139
.
11.
Odhiambo
,
D.
, and
Soyama
,
H.
, 2003, “
Cavitation Shotless Peening for Improvement of Fatigue Strength of Carbonized Steel
,”
Inter. J. Fatigue
,
25
(
9–11
), pp.
1217
1222
.
12.
Soyama
,
H.
,
Shimizu
,
M.
,
Hattori
,
Y.
, and
Nagasawa
,
Y.
, 2008, “
Improving the Fatigue Strength of the Elements of a Steel Belt for CVT by Cavitation Shotless Peening
,”
J. Mater. Sci.
,
43
(
14
), pp.
5028
5030
.
13.
Soyama
,
H.
, and
Sekine
,
Y.
, 2010, “
Sustainable Surface Modification Using Cavitation Impact for Enhancing Fatigue Strength Demonstrated by a Power Circulating-Type Gear Tester
,”
Int. J. Sustain. Eng.
,
3
(
1
), pp.
25
32
.
14.
Saitou
,
N.
,
Enomoto
,
K.
,
Kurosawa
,
K.
,
Morinaka
,
R.
,
Ishikawa
,
T.
, and
Yoshimura
,
T.
, 2003, “
Development of Water Jet Peening Technique for Reactor Internal Components of Nuclear Power Plant
,”
J. Jet Flow Eng.
20
(
1
), pp.
4
12
.
15.
Sato
,
K.
,
Mizoguchi
,
T.
,
Fujita
,
K.
, and
Ikohagi
,
T.
, 1999, “
Development of Advanced Aqua-Environmental Protection Technology Using High-Speed Cavitating Water Jets
,”
Inter. Symp. New Appl. Water Jet Technol.
,
R.
Kobayashi
, ed.,
Ishinomaki
,
Japan
, pp.
95
104
.
16.
Kalumuck
,
K. M.
, and
Chahine
,
G. L.
, 2000, “
The Use of Cavitating Jets to Oxidize Organic Compounds in Water
,”
ASME J. Fluids Eng.
,
122
(
3
), pp.
465
470
.
17.
Conn
,
A. F.
, and
Radtke
,
R. P.
, 1978, “
CAVIJETTM Augmented Deep-Hole Drilling Bits
,”
ASME J. Press. Vessel Technol.
,
100
(
1
), pp.
52
59
.
18.
Johnson
, Jr.,
V. E.
,
Chahine
,
G. L.
,
Lindenmuth
,
W. T.
,
Conn
,
A. F.
,
Frederick
,
G. S.
, and
Giacchino
, Jr.,
G. J.
, 1984, “
Cavitating and Structured Jets for Mechanical Bits to Increase Drilling Rate – Part I: Theory and Concepts
,”
ASME J. Energy Res. Technol.
,
106
(
2
), pp.
282
288
.
19.
Yanaida
,
K.
,
Nakayama
,
M.
,
Eda
,
K.
, and
Nishida
,
N.
, 1985, “
Water Jet Cavitation Performance of Submerged Horn Shaped Nozzle
,”
3rd U.S. Water Jet Conf.
,
Pittsburgh
, pp.
336
349
.
20.
Chahine
,
G. L.
,
Johnson
, Jr.,
V. E.
,
Kalumuck
,
K. M.
,
Perdue
,
T. O.
,
Waxman
,
D. N.
,
Frederick
,
G. S.
, and
Watson
,
R. E.
, 1987, “
Internal and External Acoustics and Large Structure Dynamics of Cavitating Self-Resonating Water Jets
,” Sandia National Laboratories, Contractor Report SAND86-7176, pp.
1
202
.
21.
Vijay
,
M. M.
,
Zou
,
C.
, and
Tavoularis
,
S.
, 1991, “
A Study of the Characteristics of Cavitating Water Jets by Photography and Erosion
,”
10th Inter. Conf. Jet Cutting Technol.
, pp.
37
67
.
22.
Surjaatmadja
,
J. B.
, and
Howlett
, Jr.,
J. J.
, 1992, “
Surge Enhanced Cavitating Jet
,” United States Patent 5,125,582.
23.
Yamauchi
,
Y.
,
Soyama
,
H.
,
Adachi
,
Y.
,
Sato
,
K.
,
Shindo
,
T.
,
Oba
,
R.
,
Oshima
,
R.
, and
Yamabe
,
M.
, 1995, “
Suitable Region of High-Speed Submerged Water Jet for Cutting and Peening
,”
JSME Inter. J.
,
38B
(
1
), pp.
31
38
.
24.
ASTM Designation G134-95, 2006, “
Standard Test Method for Erosion of Solid Materials by a Cavitating Liquid Jet
,”
Annual Book of ASTM Standards
, 03.02, pp.
559
571
.
25.
Soyama
,
H.
, and
Takakuwa
,
O.
, 2011, “
Enhancement of Aggressivity of Cavitating Jet and Its Practical Application
,”
J. Fluid Sci. Technol.
,
6
(
4
), pp.
510
521
.
26.
Xing
,
T.
,
Li
,
Z.
, and
Frankel
,
S. H.
, 2005, “
Numerical Simulation of Vortex Cavitation in a Three-Dimensional Submerged Transitional Jet
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
714
725
.
27.
Johnson
, Jr.,
V. E.
,
Lindenmuth
,
W. T.
,
Conn
,
A.F.
, and
Frederick
,
G.S.
, 1981, “
Feasibility Study of Tuned-Resonator, Pulsating Cavitating Water Jet for Deep-Hole Drilling
,” Sandia National Laboratories, Contractor Report SAND81-7126, pp.
1
131
.
28.
Brennen
,
C. E.
, 1995,
Cavitation and Bubble Dynamics
,
Oxford University Press
.
29.
Thiruvengadam
,
A.
, and
Preiser
,
H. S.
, 1964, “
On Testing Materials for Cavitation Damage Resistance
,”
J. Ship Res.
,
8
, pp.
39
56
.
30.
Soyama
,
H.
, 1998, “
Material Testing and Surface Modification by Using Cavitating Jet
,”
J. Soc. Mater. Sci., Japan
,
47
(
8
), pp.
381
387
.
31.
Soyama
,
H.
,
Yamauchi
,
Y.
,
Adachi
,
Y.
,
Sato
,
K.
,
Shindo
,
T.
, and
Oba
,
R.
, 1995, “
High-Speed Observations of the Cavitation Cloud around a High-Speed Submerged Water Jet
,”
JSME Inter. J.
,
38B
(
2
), pp.
245
251
.
32.
Plesset
,
M.S.
, 1972, “
Temperature Effects in Cavitation Damage
,”
ASME J. Basic Eng.
,
94
(
3
), pp.
559
566
.
33.
Hattori
,
S.
,
Goto
,
Y.
,
Fukuyama
,
T.
,
Yagi
,
Y.
, and
Murase
,
M.
, 2005, “
Influence of Temperature on Erosion by a Cavitating Liquid Jet
,”
Trans. JSME
,
71A
(
707
), pp.
1081
1087
.
34.
Lichtarowicz
,
A.
, 1981, “
Erosion Testing With Cavitating Jet
,”
Cavitation Erosion in Fluid Systems
,
ASME Fluid Engineering Conference
, pp.
153
161
.
35.
Momma
,
T.
, and
Lichtarowicz
A.
, 1993, “
Some Experiments on Cavitation Damage Produced by a Submerged Jet
,”
2nd ASME/JSME Nuclear Engineering Joint Conference
, pp.
877
884
.
36.
Soyama
,
H.
, and
Lichtarowicz
,
A.
, 1996, “
Cavitating Jets – Similarity Correlations
,”
J. Jet Flow Eng.
,
13
(
2
), pp.
9
19
.
37.
Morel
,
T.
, 1979, “
Experimental Study of a Jet-Driven Helmholtz Oscillator
,”
ASME J. Fluids Eng.
,
101
(
3
), pp.
383
390
.
38.
Soyama
,
H.
, and
Nishizawa
,
K.
, 2009, “
Enhancement of the Impact Force Around a Cavitating Jet by Changing the Nozzle Outlet Geometry
,”
Japanese J. Multiphase Flow, Prog. in Multiphase Flow Res.
,
4
, pp.
77
85
.
You do not currently have access to this content.