This paper provides a fresh analytical solution for fully developed forced convection through a Darcy–Brinkman–Forchheimer porous medium imbedded inside a circular tube, with imposed uniform heat flux at walls. A spectral homotopy analysis method is applied to present a solution which spans a wide range of the main parameters (the Darcy number (Da), viscosity ratio (M), and Forchheimer number (F)). The analytical results are compared with data available in the literature, and excellent agreement is found. The paper is capable of addressing the problem in a general porous medium for which both inertial and boundary-friction effects affect the flow and heat transfer physics. In order to serve this aim, the influence of Da, M, and F on the dimensionless velocity and temperature profiles, as well as Nusselt number, are investigated.

References

References
1.
Nield
,
D. A.
, and
Bejan
,
A.
, 2006,
Convection in Porous Media
,
3rd ed.
,
Springer
,
New York.
2.
Vafai
,
K.
, 2005,
Handbook of Porous Media
,
2nd ed.
,
Taylor & Francis
,
New York.
3.
Vafai
,
K.
, and
Tien
,
C. L.
, 1981, “
Boundary and Inertia Effect on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
, pp.
195
203
.
4.
Vafai
,
K.
, and
Kim
,
S.
, 1989, “
Forced Convection in a Channel Filled With Porous Medium: An Exact Solution
,”
ASME J. Heat Transfer
,
111
(
4
), pp.
1103
1106
.
5.
Amiri
,
A.
, and
Vafai
,
K.
, 1994, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
,
37
(
6
), pp.
939
954
.
6.
Amiri
,
A.
,
Vafai
,
K.
, and
Kuzay
,
T. M.
, 1995, “
Effect of Boundary Condition on Non-Darcian Heat Transfer Through Porous Media and Experimental Comparison
,”
Numer. Heat Transfer, Part
, Part A,
27
, pp.
651
664
.
7.
Nield
,
D. A.
,
Junqueira
,
S. L. M.
, and
Lage
,
J. L.
, 1996, “
Forced Convection in a Fluid-Saturated Porous-Medium Channel With Isothermal or Isoflux Boundaries
,”
J. Fluid Mech.
,
322
, pp.
201
214
.
8.
Hooman
,
K.
,
Gurgenci
,
H.
, and
Merrikh
,
A. A.
, 2007,
“Heat Transfer and Entropy Generation Optimization of Forced Convection in Porous-Saturated Ducts of Rectangular Cross-Section
,
Int. J. Heat Mass Transfer
,
50
(
11,12
), pp.
2051
2059
.
9.
Kaviany
,
M.
, 1985, “
Laminar Flow Through a Porous Channel Bounded by Isothermal Parallel Plates
,”
Int. J. Heat Mass Transfer
,
28
(
4
), pp.
851
858
.
10.
Haji-Sheikh
,
A.
, and
Vafai
,
K.
, 2004, “
Analysis of Flow and Heat Transfer in Porous Media Imbedded Inside Various-Shaped Ducts
,”
Int. J. Heat Mass Transfer
,
47
, pp.
1889
1905
.
11.
Hooman
,
K.
, and
Gurgenci
,
H.
, 2007, “
A Theoretical Analysis of Forced Convection in a Porous-Saturated Circular Tube: Brinkman–Forchheimer Model
,”
Transp. Porous Media
,
69
, pp.
289
300
.
12.
Hooman
,
K.
, 2008, “
A Perturbation Solution for Forced Convection in a Porous Saturated Duct
,”
J. Comput. Appl. Math.
,
211
, pp.
57
66
.
13.
Hooman
,
K.
, and
Merrikh
,
A. A.
, 2003, “
Forced Convection in a Fluid-Saturated Porous-Medium Tube With Isoflux Wall
,”
Int. Commun. Heat Mass Transfer
,
30
(
7
), pp.
1015
1026
.
14.
Liao
,
S. J.
, 2003,
Beyond Perturbation: Introduction to the Homotopy Analysis Method
,
Chapman & Hall/CRC Press
,
Boca Raton, FL
.
15.
Liao
,
S. J.
, 2003, “
On the Analytic Solution of Magnetohydrodynamic Flows of Non-Newtonian Fluids Over a Stretching Sheet
,”
J. Fluid Mech.
,
488
, pp.
189
212
.
16.
Abbasbandy
,
S.
, 2007, “
Homotopy Analysis Method for Heat Radiation Equations
,”
Int. Commun. Heat Mass Transfer
,
34
, pp.
380
387
.
17.
Abbasbandy
,
S.
, 2006, “
The Application of Homotopy Analysis Method to Non-Linear Equations Arising in Heat Transfer
,”
Phys. Lett. A
,
360
, pp.
109
113
.
18.
Hayat
,
T.
, and
Sajid
,
M.
, 2007, “
Analytic Solution for Axisymmetric Flow and Heat Transfer of a Second Grade Fluid Past a Stretching Sheet
,”
Int. J. Heat Mass Transfer
,
50
, pp.
75
84
.
19.
Zhao
,
B. Q.
,
Pantokratoras
,
A.
,
Fang
,
T. G.
, and
Liao
,
S. J.
, 2010, “
Flow of a Weakly Conducting Fluid in a Channel Filled With a Darcy–Brinkman–Forchheimer Porous Medium
,”
Transp. Porous Media
,
85
, pp.
131
142
.
20.
Hayat
,
T.
,
Abbas
,
Z.
,
Sajid
,
M.
, and
Asghar
,
S.
, 2006, “
The Influence of Thermal Radiation on MHD Flow of a Second Grade Fluid
,”
Int. J. Heat Mass Transfer
,
50
, pp.
931
941
.
21.
Liao
,
S. J.
, 2005, “
A New Branch of Solutions of Boundary-Layer Flows Over a Permeable Stretched Plate
,”
Int. J. Heat Mass Transfer
,
48
(
12
), pp.
2529
2539
.
22.
Hayat
,
T.
,
Naz
,
R.
, and
Abbasbandy
,
S.
, 2011, “
Poiseuille Flow of a Third Grade Fluid in a Porous Medium
,”
Transp. Porous Media
,
87
(
2
), pp.
355
367
.
23.
Abbasbandy
,
S.
,
Tan
,
Y.
, and
Liao
,
S. J.
, 2007, “
Newton-Homotopy Analysis Method for Non-Linear Equations
,”
Appl. Math. Comput.
,
188
, pp.
1794
1800
.
24.
Abbasbandy
,
S.
, 2008, “
Approximate Solution for the Non-Linear Model of Diffusion and Reaction in Porous Catalysts by Means of the Homotopy Analysis Method
,”
Chem. Eng. J.
,
136
, pp.
144
150
.
25.
Motsa
,
S. S.
,
Sibanda
,
P.
, and
Shateyi
,
S.
, 2010, “
A New Spectral-Homotopy Analysis Method for Solving a Non-Linear Second Order BVP
,”
Commun. Nonlinear Sci. Numer. Simul.
,
15
, pp.
2293
2302
.
26.
Givler
,
R. C.
, and
Altobelli
,
S. A.
, 1994, “
A Determination of the Effective Viscosity for the Brinkman-Forchheimer Flow Model
,”
J. Fluid Mech.
,
258
, pp.
355
370
.
27.
Weinert
,
A.
, and
Lage
,
J. L.
, 1994,
“Porous Aluminum-Alloy Based Cooling Devices for Electronics,”
SMU-MED-CPMA Inter.Report No. 1.01/94.
28.
Rajasubramanian
,
G.
,
Meidell
,
R. S.
,
Landau
,
C.
,
Dollar
,
M. L.
,
Holt
,
D. B.
,
Willard
,
J. E.
,
Prager
,
M. D.
, and
Eberhart
,
R. C.
, 1994, “
Fabrication of Resorbable Microporous Intravascular Stents for Gene Therapy Applications
,”
ASAIO J.
,
40
, pp.
M584
589
.
29.
Nield
,
D. A.
, and
Lage
,
J. L.
, 1997, “
Discussion of a Discussion by K. Vafai and S.J. Kim
,”
ASME J. Heat Transfer
,
119
, pp.
195
197
.
30.
Martys
,
N.
,
Bentz
,
D. P.
, and
Garboczi
,
E. J.
, 1994, “
Computer Simulation Study of the Effective Viscosity in Brinkman’s Equation
,”
Phys. Fluids
,
6
, pp.
1434
1439
.
31.
Weissberg
,
H. L.
, 1963,
“Effective Diffusion Coefficients in Porous Media
,”
J. Appl. Phys.
34
, pp.
2636
2639
.
32.
Sáez
,
A. E.
,
Perfetti
,
J. C.
, and
Rusinek
,
I.
, 1991, “
Prediction of Effective Diffusivities in Porous Media Using Spatially Periodic Models
,”
Transp. Porous Media
,
6
, pp.
143
158
.
33.
Quintard
,
M.
, 1993, “
Diffusion in Isotropic and Anisotropic Porous Systems: Three Dimensional Calculations
,”
Transp. Porous Media
,
11
, pp.
187
199
.
You do not currently have access to this content.