Background. A comprehensive model in the Eulerian-Lagrangian scheme is used to investigate the performance of the gas-droplet two-phase flow for a typical effervescent atomization spray with different atomized liquids. Method of Approach. Based on the particle tracking method, the droplet primary and secondary breakup, droplets collision and coalescence are taken into consideration. Results. The predicted droplet mean size is compared well with the published experimental data. The influences of liquid physical properties are discussed not only on droplet mean size, but also on droplet velocity, distribution, events of breakup and collision, Weber number, Ohnesorge number and their evolutions. Conclusions. Results show liquid viscosity has a slight effect on the droplet size and its distribution. While a decrease in liquid surface tension serves to get finer droplets and wider droplet spatial distribution. Small liquid density, surface tension and viscosity are benefit for getting higher atomized droplet velocity.

References

References
1.
Lefebvre
,
A. H.
,
Atomization and Sprays, Purdue University, West Lafayette, Indiana
,
Hemisphere Publishing Corporation
, Chap. 2.
2.
Sheng
,
H. Z.
,
Wu
,
D. Y.
,
Zhang
,
H. C.
, and
Wei
,
X. L.
, 2006, “
Viscosity, Surface Tension, and Atomization of Water-Methanol and Diesel Emulsions
,”
Atomization Sprays
,
16
(
1
), pp.
1
13
.
3.
Dorfner
,
V.
,
Domnick
,
J.
,
Durst
,
F.
, and
Kohler
,
R.
, 1995, “
Viscosity and Surface Tension Effects in Pressure Swirl Atomization
,”
Atomization Sprays
,
5
, pp.
261
285
.
4.
Hyung
,
G. K.
,
Toshiaki
Y.
,
Kyu
K. S.
and
Torii
S.
, 2004, “
Microscopic Spray Characteristics in the Effervescent Atomizer with Two Aerator Tubes
,”
J. Mech. Sci. Technol.
18
, pp.
1661
1667
.
5.
Sovani
,
S. D.
,
Sojka
,
P. E.
, and
Lefebvre
,
A.H.
, 2001, “
Effervescent Atomization
,”
Prog. Energy Combust. Sci.
,
27
, pp.
483
521
.
6.
Lund
,
M. T.
,
Sojka
,
P. E.
,
Lefebvre
,
A. H.
, and
Gosselin
,
P. G.
, 1993, “
Effervescent Atomization at Low Mass Flow Rates, Part 1: The Influence of Surface Tension
,”
Atomization Sprays
,
3
, pp.
77
89
.
7.
Sutherland
,
J. J.
,
Sojka
,
P. E.
, and
Plesniak
,
M. W.
, 1997,
“Ligament-Controlled Effervescent Atomization,”
Atomization Sprays
, pp.
383
406
.
8.
Liu
,
L. S.
,
Wu
,
J. X.
,
Han
,
Z. X.
, and
Fu
,
L. M.
, 2002, “
Studies of Effervescent Atomization at Different Physical Properties of Spray Fluid
,”
J. Thermal Sci. Technol.
2
, pp.
128
132
(in Chinese).
9.
Beck
,
J. C.
and
Watkins
,
A.P.
, 2002, “
On the Development of Spray Submodels Based on Droplet Size Moments
,”
J. Comput. Phys.
182
, pp.
586
621
.
10.
O’Rourke
,
P. J.
and
Amsden
,
A. A.
, 1987,
“The TAB Method for Numerical Calculation of Spray Droplet Breakup,”
SAE Paper No. 872089.
11.
Tanner
,
F. X.
, 2004, “
Development and Validation of a Cascade Atomization and Drop Breakup Model for High-Velocity Dense Sprays
,”
Atomization Sprays
,
14
, pp.
211
242
.
12.
Reitz
,
R. D.
, 1987, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomization Sprays
3
, pp.
309
337
.
13.
O’Rourke
,
P. J.
, 1981,
“Collective Drop Effects on Vaporizing Liquid Sprays.”
Ph.D. thesis, Mechanical and Aerospace Engineering, Princeton University, Princeton, USA.
14.
Gwon
,
H. K.
and
Hong
S. R.
, 2005, “
Droplet Collision Processes in an Inter-Spray Impingement System
,”
J. Aerosol Sci.
36
, pp.
1300
1321
.
15.
Sovani
,
S. D.
,
Sojka
,
P. E.
, and
Lefebvre
,
A. H.
, 2001, “
Effervescent Atomization
,”
Prog. Energy Combust. Sci.
,
27
, pp.
483
521
.
16.
Xiong
,
H. B.
,
Lin
,
J. Z.
, and
Zhu
,
Z. F.
, 2009, “
Three-Dimensional Simulation of Effervescent Atomization Spray
,”
Atomization Sprays
,
19
, pp.
1
16
.
17.
Lin
,
J. Z.
,
Qian
,
L. J.
,
Xiong
,
H. B.
, and
Chan
,
T. L.
, 2009, “
Effects of Operating Conditions on Droplet Deposition onto Surface of Atomization Impinging Spray
,”
Surface & Coatings Technology
,
203
, pp.
1733
1740
.
18.
Geckler
,
S. C.
and
Sojka
,
P. E.
, 2008,
“Effervescent Atomization of Viscoelastic Liquids: Experiment and Modeling,”
J. Fluids Eng.
130
,
061303
.
19.
Liu
,
L. S.
,
Fu
,
M. L.
, and
Wu
J. X.
, 2001, “
The Distribution of SMD Downstream the Discharge Orifices of Effervescent Atomizers
,”
J. Eng. Phys. Thermophys.
22
, pp.
653
656 (in Chinese)
.
20.
Lund
,
M. T.
and
Jian
,
C. Q.
, 1998, “
The Influence of Atomizing Gas Molecular Weight on Low Mass Flow-Rate Effervescent Atomization Performance
,”
J. Fluids Eng.
,
120
, pp.
750
754
.
21.
Senecal
,
P. K.
,
Schmidt
,
D. P.
,
Nouar
,
I.
,
Rutland
,
C. J.
,
Reitz
,
R. D.
, and
Corradini
,
M. L.
, 1999, “
Modeling High-Speed Viscous Liquid Sheet Atomization
,”
Int. J. Multiphase Flow
,
25
, pp.
1073
1097
.
22.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
Bubbles, Drops, and Particles
,
Academic Press
,
NY
(1978).
23.
A. A.
Amsden
,
P. J.
O’Rourke
, and
T. D.
Butler
, 1989,
KIVA-II: A computer program for chemically reactive flows with sprays
,
Los Alamos National Laboratory
,
New Mexico
.
24.
Wan
,
Y. P.
,
Pasad
,
V.
,
Wang
,
G.-X.
,
Sampath
,
S.
, and
Fincke
,
J. R.
, 1999, “
Model and Powder Particle Heating, Melting, Resolidification, and Evaporation in Plasma Spraying Process
,”
J. Heat Transfer.
121
, pp.
691
699
.
25.
Xiong
,
H. B.
,
Zheng
,
L. L.
,
Sampath
,
S.
,
Fincke
,
J.
, and
Williamson
,
R.
, 2003,
“Three-Dimensional Simulation of Plasma Spray Jet,” Proceedings of the 2003 ASME Summer Heat Transfer Conference, Volume 3,
p.
689
697
.
You do not currently have access to this content.