When a vertical liquid jet impacts on a solid and horizontal surface, the liquid starts spreading radially on the surface, until a sudden increase in the fluid height occurs and a circular hydraulic jump (CHJ), easily seen in the kitchen sink, is formed. In this study, the formation of CHJ is numerically simulated by solving the flow governing equations, continuity and momentum equations, along with an equation to track the free surface advection using the volume-of-fluid (VOF) method and Youngs’ algorithm. The numerical model is found to be capable of simulating the jump formation and its different types. Extensive comparisons are performed between the model results and those of the available experiments and modified Watson’s theory. The model is shown to accurately predict the jump location and its behavior. Also a parametric study for the effects of different parameters including volumetric flow rate, downstream height, viscosity and gravity on the jump radius, and its characteristics is carried out. Compared with previous works on CHJ available in the literature, employing the VOF method considering the surface tension effects and performing a full parametric study and a complete comparison with experiments and theory are new in this paper. The simulations are performed for two different liquids, water and ethylene glycol, where it is found that the jump is more stable and its location is less sensitive to the downstream height for the more viscous liquid (ethylene glycol). When the downstream height is increased, the radius of the circular hydraulic jump reduces up to a certain limit after which there would be no stable jump. If the gravity is decreased, the radius of the jump and the length of the transition zone will both increase. The radius of the jump in microgravity conditions is less sensitive to the downstream height than it is in normal gravity.

1.
Avedisian
,
C.
, and
Zhao
,
Z.
, 2000, “
The Circular Hydraulic Jump in Low Gravity
,”
Proc. R. Soc. London
0370-1662,
456
, pp.
2127
2151
.
2.
Womac
,
D. J.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
, 1993, “
Correlating Equations for Impingement Cooling of Small Heat Sources With Single Circular Liquid Jets
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
106
115
.
3.
Rayleigh
,
Lord
, 1914, “
On the Theory of Long Waves and Bores
,”
Proc. R. Soc. London, Ser. A
0950-1207,
90
, pp.
324
328
.
4.
Birkhoff
,
G.
, and
Zarantonello
,
E.
, 1957,
Jets, Wakes and Cavities
,
Academic
,
New York
.
5.
Watson
,
E. J.
, 1964, “
The Radial Spread of a Liquid Jet Over a Horizontal Plane
,”
J. Fluid Mech.
0022-1120,
20
, pp.
481
499
.
6.
Tani
,
I.
, 1949, “
Water Jump in the Boundary Layer
,”
J. Phys. Soc. Jpn.
0031-9015,
4
, pp.
212
215
.
7.
Kurihara
,
M.
, 1946, “
On Hydraulic Jumps
,”
Proceedings of the Report of the Research Institute for Fluid Engineering
, Kyusyu Imperial University,
3
(
2
), pp.
11
33
.
8.
Olsson
,
R.
, and
Turkdogan
,
E.
, 1966, “
Radial Spread of a Liquid Stream on a Horizontal Plate
,”
Nature (London)
0028-0836,
211
, pp.
813
816
.
9.
Ishigai
,
S.
,
Nakanishi
,
S.
,
Mizuno
,
M.
, and
Imamura
,
T.
, 1977, “
Heat Transfer of the Impinging Round Water Jet in the Interference Zone of Film Flow Along the Wall
,”
Bull. JSME
0021-3764,
20
, pp.
85
92
.
10.
Nakoryakov
,
V.
,
Pokusaev
,
B.
, and
Troyan
,
E.
, 1978, “
Impingement of an Axisymmetric Liquid Jet on a Barrier
,”
Int. J. Heat Mass Transfer
0017-9310,
21
, pp.
1175
1184
.
11.
Bouhadef
,
M.
, 1978, “
Etalement en Couche Mince d’un Jet Liquide Cylindrique Vertical Saur un Plan Horizontal
,”
Z. Angew. Math. Phys.
0044-2275,
29
, pp.
157
167
.
12.
Craik
,
A.
,
Latham
,
R.
,
Fawkes
,
M.
, and
Gibbon
,
P.
, 1981, “
The Circular Hydraulic Jump
,”
J. Fluid Mech.
0022-1120,
112
, pp.
347
362
.
13.
Errico
,
M.
, 1986, “
A Study of the Interaction of Liquid Jets with Solid Surfaces
,” Ph.D. thesis, University of California, San Diego, CA.
14.
Vasista
,
V.
, 1989, “
Experimental Study of the Hydrodynamics of an Impinging Liquid Jet
,” B.S. thesis, MIT, Department of Mechanical Engineering.
15.
Liu
,
X.
, and
Lienhard
,
J.
, 1993, “
The Hydraulic Jump in Circular Jet Impingement and in Other Thin Liquid Films
,”
Exp. Fluids
0723-4864,
15
, pp.
108
116
.
16.
Ellegaard
,
C.
,
Hansen
,
A.
,
Haaning
,
A.
,
Hansen
,
K.
, and
Bohr
,
T.
, 1996, “
Experimental Results on Flow Separation and Transition in the Circular Hydraulic Jump
,”
Phys. Scr.
0031-8949,
T67
, pp.
105
110
.
17.
Bush
,
J. W. M.
, and
Aristoff
,
J. M.
, 2003, “
The Influence of Surface Tension on the Circular Hydraulic Jumps
,”
J. Fluid Mech.
0022-1120,
489
, pp.
229
238
.
18.
Bush
,
J. W. M.
,
Aristoff
,
J. M.
, and
Hosoi
,
A.
, 2006, “
An Experimental Investigation of the Stability of the Circular Hydraulic Jump
,”
J. Fluid Mech.
0022-1120,
558
, pp.
33
52
.
19.
Bowles
,
R. I.
, and
Smith
,
F. T.
, 1992, “
The Standing Hydraulic Jump: Theory, Computations and Comparisons With Experiments
,”
J. Fluid Mech.
0022-1120,
242
, pp.
145
168
.
20.
Higuera
,
F. G.
, 1994, “
The Hydraulic Jump in a Viscous Laminar Flow
,”
J. Fluid Mech.
0022-1120,
274
, pp.
69
92
.
21.
Bohr
,
T.
,
Dimon
,
P.
, and
Putkaradze
,
V.
, 1993, “
Shallow Water Approach to the Circular Hydraulic Jump
,”
J. Fluid Mech.
0022-1120,
254
, pp.
635
648
.
22.
Bohr
,
T.
,
Putkaradze
,
V.
, and
Watanabe
,
S.
, 1997, “
Averaging Theory for the Structure of Hydraulic Jumps and Separation in Laminar Free Surface Flows
,”
Phys. Rev. Lett.
0031-9007,
79
, pp.
1038
1041
.
23.
Watanabe
,
S.
,
Putkaradze
,
V.
, and
Bohr
,
T.
, 2003, “
Integral Methods for Shallow Free-Surface Flows With Separation
,”
J. Fluid Mech.
0022-1120,
480
, pp.
233
265
.
24.
Ellegaard
,
C.
,
Hansen
,
A.
,
Haaning
,
A.
,
Hansen
,
K.
,
Marcusson
,
A.
,
Bohr
,
T.
,
Lundbek Hansen
,
J.
, and
Watanabe
,
S.
, 1998, “
Creating Corners in Kitchen Sinks
,”
Nature (London)
0028-0836,
392
, pp.
767
768
.
25.
Ellegaard
,
C.
,
Hansen
,
A.
,
Haaning
,
A.
,
Hansen
,
K.
,
Marcusson
,
A.
,
Bohr
,
T.
,
Lundbek Hansen
,
J.
, and
Watanabe
,
S.
, 1999, “
Polygonal Hydraulic Jumps
,”
Nonlinearity
0951-7715,
12
, pp.
1
7
.
26.
Yokoi
,
K.
, and
Xiao
,
F.
, 1999, “
A Numerical Study of the Transition in the Circular Hydraulic Jumps
,”
Phys. Lett. A
0375-9601,
257
, pp.
153
157
.
27.
Yokoi
,
K.
, and
Xiao
,
F.
, 2002, “
Mechanism of Structure Formation in Circular Hydraulic Jumps: Numerical Studies of Strongly Deformed Free-Surface Shallow Flows
,”
Physica D
0167-2789,
161
, pp.
202
219
.
28.
Brechet
,
Y.
, and
Neda
,
Z.
, 1999, “
On the Circular Hydraulic Jump
,”
Am. J. Phys.
0002-9505,
67
(
8
), pp.
723
731
.
29.
Rao
,
A.
, and
Arakeri
,
J.
, 2001, “
Wave Structure in the Radial Film Flow With a Circular Hydraulic Jump
,”
Exp. Fluids
0723-4864,
31
, pp.
542
549
.
30.
Ferreira
,
V.
,
Tome
,
M.
,
Mangiavacchi
,
N.
,
Castelo
,
A.
,
Cuminato
,
J.
,
Fortuna
,
A.
, and
McKee
S.
, 2002, “
High-Order Upwinding and the Hydraulic Jump
,”
Int. J. Numer. Methods Fluids
0271-2091,
39
, pp.
549
583
.
31.
Gradeck
,
M.
,
Kouachi
,
A.
,
Dani
,
A.
,
Arnoult
,
D.
, and
Borean
,
J.
, 2006, “
Experimental and Numerical Study of the Hydraulic Jump of an Impinging Jet on a Moving Surface
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
193
201
.
32.
Ray
,
A.
, and
Bhattacharjee
,
J.
, 2007, “
Standing and Traveling Waves in the Shallow-Water Circular Hydraulic Jump
,”
Phys. Lett. A
0375-9601,
371
, pp.
241
248
.
33.
Mikielewicz
,
J.
, and
Mikielewicz
,
D.
, 2008, “
A Simple Dissipation Model of Circular Hydraulic Jump
,”
Int. J. Heat Mass Transfer
0017-9310,
52
(
1–2
), pp.
17
21
.
34.
Kate
,
R.
,
Das
,
P.
, and
Chakraborty
,
S.
, 2008, “
An Investigation on Non-Circular Hydraulic Jumps Formed due to Obliquely Impinging Circular Liquid Jets
,”
Exp. Therm. Fluid Sci.
0894-1777,
32
, pp.
1429
1439
.
35.
Kasimov
,
A. R.
, 2008, “
A Stationary Circular Hydraulic Jump, the Limits of Its Existence and Its Gasdynamic Analogue
,”
J. Fluid Mech.
0022-1120,
601
, pp.
189
198
.
36.
Middleman
,
S.
, 1995,
Modeling Axisymmetric Flows: Dynamics of Films, Jets and Drops
, Chap. 5,
Academic
,
New York
.
37.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
, 1992, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
0021-9991,
100
, pp.
335
354
.
38.
Sussman
,
M.
, and
Fatemi
,
E.
, 1999, “
An Efficient, Interface Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
20
(
4
), pp.
1165
1191
.
39.
Osher
,
S.
, and
Fedkiw
,
R.
, 2001, “
Level Set Methods: An Overview and Some Recent Results
,”
J. Comput. Phys.
0021-9991,
169
, pp.
463
502
.
40.
Passandideh-Fard
,
M.
, and
Roohi
,
E.
, 2008, “
Transient Simulations of Cavitating Flows Using a Modified Volume-of-Fluid (VOF) Technique
,”
Int. J. Comput. Fluid Dyn.
1061-8562,
22
(
1&2
), pp.
97
114
.
41.
Noh
,
W. F.
, and
Woodward
,
P. R.
, 1976, “
SLIC (Simple Line Interface Construction)
,”
Lect. Notes Phys.
0075-8450,
59
, pp.
330
340
.
42.
Hirt
,
F. H.
, and
Nichols
,
B. D.
, 1981, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
0021-9991,
39
, pp.
201
225
.
43.
Youngs
,
D. L.
, 1982, “
Time Dependent Multi Material Flow With Large Fluid Distortion
,”
Numerical Methods for Fluid Dynamics
,
New York Academic Press
,
New York
, pp.
273
285
.
44.
Pasandideh-Fard
,
M.
,
Bussmann
,
M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
, 2001, “
Simulating Droplet Impact on a Substrate of Arbitrary Shape
,”
Atomization Sprays
1044-5110,
11
, pp.
397
414
.
45.
Teymourtash
,
A. R.
,
Khavari
,
M.
, and
Passandideh-Fard
,
M.
, 2010, “
Experimental and Numerical Investigation of Circular Hydraulic Jump
,”
The 18th Annual International Conference on Mechanical Engineering, ISME2010
,
A.
Nouri-Borujerdi
and
M. R.
Movahhedi
, eds., Vol.
1
, School of Mechanical Engineering, Sharif University of Technology, p.
35
, Paper No. 3537.
You do not currently have access to this content.