This paper theoretically investigates the hydrodynamic behavior of a falling microcylinder viscometer. The Navier slip conditions are applied to all fluid/solid interfacial boundary conditions of the device. Previous investigations focused on the behavior at the macroscale level and did not consider the slip conditions. The slip coefficients for typical devices and operating conditions are found to be major parameters that affect the behavior of the microscale viscometer. Formulas for determining the viscosity coefficients using a microscale viscometer without considering slip conditions give inaccurate results. The theoretical model has been verified by comparing its predictions with that of the macroviscometer after neglecting the slip conditions.

1.
Bird
,
B. R.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
, 1987,
Dynamics of Polymeric Liquids
,
Wiley
,
New York
.
2.
Tran-Son-Tay
,
R.
,
Beaty
,
B. B.
,
Acker
,
D. N.
, and
Hochmuth
,
R. M.
, 1988, “
Magnetically Driven, Acoustically Tracked, Translating-Ball Rheometer for Small, Opaque Samples
,”
Rev. Sci. Instrum.
0034-6748,
59
, pp.
1399
1404
.
3.
Cristescu
,
N. D.
,
Conrad
,
B. P.
, and
Tran-Son-Tay
,
R.
, 2002, “
A Closed Form Solution for Falling Cylinder Viscometers
,”
Int. J. Eng. Sci.
0020-7225,
40
, pp.
605
620
.
4.
Bridgman
,
P. W.
, 1926, “
The Effect of Pressure on the Viscosity of Forty-three Liquids
,”
Proc. Am. Acad. Arts Sci.
0065-6836,
61
(
56
), pp.
57
99
.
5.
Swift
,
G. W.
,
Lohrenz
,
J.
, and
Kurata
,
F.
, 1960, “
Liquid Viscosities Above the Normal Boiling Point for Methane, Ethane, Propane, and n-Butane
,”
AIChE J.
0001-1541,
6
(
3
), pp.
415
419
.
6.
Lohrenz
,
J.
,
Swift
,
G. W.
, and
Kurata
,
F.
, 1960, “
An Experimentally Verified Theoretical Study of the Falling Cylinder Viscometer
,”
AIChE J.
0001-1541,
6
(
4
), pp.
547
550
.
7.
Ashare
,
E.
,
Bird
,
R. B.
, and
Lescarboura
,
J. A.
, 1965, “
Falling Cylinder Viscometer for Non-Newtonian Fluids
,”
AIChE J.
0001-1541,
11
(
5
), pp.
910
916
.
8.
Eichstadt
,
F. J.
, and
Swift
,
G. W.
, 1966, “
Theoretical Analysis of the Falling Cylinder Viscometer for Power Law and Bingham Plastic Fluids
,”
AIChE J.
0001-1541,
12
, pp.
1179
1183
.
9.
Chen
,
M. C. S.
,
Lescarboura
,
J. A.
, and
Swift
,
G. W.
, 1968, “
The Effect of Eccentricity on the Terminal Velocity of the Cylinder in a Falling Cylinder Viscometer
,”
AIChE J.
0001-1541,
14
(
1
), pp.
123
127
.
10.
Irving
,
J. B.
, and
Barlow
,
A. J.
, 1971, “
An Automatic High Pressure Viscometer
,”
J. Phys. E
0022-3735,
4
, pp.
232
236
.
11.
Chan
,
R. K. Y.
, and
Jackson
,
D. A.
, 1985, “
An Automated Falling-Cylinder High Pressure Laser-Doppler Viscometer
,”
J. Phys. E
0022-3735,
18
, pp.
510
515
.
12.
Chen
,
M. C. S.
, and
Swift
,
G. W.
, 1972, “
Analysis of Entrance and Exit Effects in a Falling Cylinder Viscometer
,”
AIChE J.
0001-1541,
18
(
1
), pp.
146
149
.
13.
Wehbeh
,
E. G.
,
Ui
,
T. J.
, and
Hussey
,
R. G.
, 1993, “
End Effects for the Falling Cylinder Viscometer
,”
Phys. Fluids A
0899-8213,
5
(
1
), pp.
25
33
.
14.
Gad-el-Hak
,
M.
, 1999, “
The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
5
33
.
15.
Gad-el-Hak
,
M.
, 2002, “
Flow Physics in Microdevices
,”
The Handbook of MEMS
,
CRC
,
Boca Raton, FL
.
16.
Karniadakis
,
G.
, and
Beskok
,
A.
, 2002,
Micro Flow Fundamentals and Simulation
,
Springer-Verlag
,
New York
.
17.
Bataineh
,
K. M.
, and
Al-Nimr
,
M. A.
, 2009, “
2D Navier–Stokes Simulations of Microscale Viscous Pump With Slip Flow
,”
ASME J. Fluids Eng.
0098-2202,
131
(
5
), p.
051105
.
18.
Spikes
,
H.
, and
Granick
,
S.
, 2003, “
Equation for Slip of Simple Liquids at Smooth Solid Surfaces
,”
Langmuir
0743-7463,
19
, pp.
5065
5071
.
19.
Thompson
,
P. A.
, and
Troian
,
S. M.
, 1997, “
A General Boundary Condition for Liquid Flow at Solid Surfaces
,”
Nature (London)
0028-0836,
389
, pp.
360
362
.
20.
Cottin-Bizonne
,
C.
,
Barrat
,
J. L.
,
Bocquet
,
L.
, and
Charlaix
,
E.
, 2003, “
Low-Friction Flows of Liquid at Nanopatterned Interfaces
,”
Nature Mater.
1476-1122,
2
, pp.
237
240
.
21.
Churaev
,
N.
,
Sobolev
,
V.
, and
Somov
,
A.
, 1984, “
Slippage of Liquids Over Lyophobic Solid Surfaces
,”
J. Colloid Interface Sci.
0021-9797,
97
, pp.
574
581
.
22.
Pit
,
R.
,
Hervet
,
H.
, and
Léger
,
L.
, 2000, “
Direct Experimental Evidence of Slip in Hexadecane: Solid Interfaces
,”
Phys. Rev. Lett.
0031-9007,
85
, pp.
980
983
.
23.
Ruckenstein
,
E.
, and
Rajora
,
P.
, 1983, “
On the No-Slip Boundary Condition of Hydrodynamics
,”
J. Colloid Interface Sci.
0021-9797,
96
, pp.
488
491
.
24.
Schnell
,
E.
, 1956, “
Slippage of Water Over Nonwettable Surfaces
,”
J. Appl. Phys.
0021-8979,
27
, pp.
1149
1152
.
25.
Tretheway
,
D.
, and
Meinhart
,
C.
, 2002, “
Apparent Fluid Slip at Hydrophobic Microchannel Walls
,”
Phys. Fluids
1070-6631,
14
, pp.
L9
L12
.
26.
Watanabe
,
K.
,
Udagawa
,
Y.
, and
Mizunuma
,
H.
, 1999, “
Slip of Newtonian Fluids at Slip Boundar
,”
J. Fluid Mech.
0022-1120,
381
, pp.
225
238
.
27.
Zhu
,
Y.
, and
Granick
,
S.
, 2001, “
Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces
,”
Phys. Rev. Lett.
0031-9007,
87
, p.
096105
.
28.
Craig
,
V. S.
,
Neto
,
C.
, and
Williams
,
D. R.
, 2001, “
Shear-Dependent Boundary Slip in an Aqueous Newtonian Liquid
,”
Phys. Rev. Lett.
0031-9007,
87
, p.
054504
.
29.
Arkilic
,
E. B.
,
Schmidt
,
M. A.
, and
Breuer
,
K. S.
, 1997, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
1057-7157,
6
, pp.
167
178
.
30.
Choi
,
C.
,
Westin
,
K. J. A.
, and
Breuer
,
K. S.
, 2003, “
Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels
,”
Phys. Fluids
1070-6631,
15
(
10
), pp.
2897
.
31.
Zhu
,
L.
,
Tretheway
,
D.
,
Petzold
,
L.
, and
Meinhart
,
C.
, 2005, “
Simulation of Fluid Slip at 3D Hydrophobic Microchannel Walls by the Lattice Boltzmann Method
,”
J. Comput. Phys.
0021-9991,
202
, pp.
181
195
.
32.
Vinogradova
,
O. I.
, 1999, “
Slippage of Water Over Hydrophobic Surfaces
,”
Int. J. Min. Process.
0301-7516,
56
, pp.
31
60
.
33.
Navier
,
C. L. M. H.
, 1823, “
M’emoire sur les lois du mouvement des fluids
,”
Mem. Acad. Sci. Inst. Fr.
0368-9263,
6
, pp.
389
416
.
34.
Navier
,
C. L. M. H.
, 1823, “
M’emoire sur les lois du mouvement des fluids
,”
Mem. Acad. Sci. Inst. Fr.
0368-9263,
6
, pp.
432
436
.
35.
Lamb
,
H.
, 1932,
Hydrodynamics
,
Dover
,
New York
, pp.
594
616
.
36.
Paranjape
,
B. V.
, and
Robson
,
R. E.
, 1990, “
Comment on Slip Velocity at a Fluid-Solid Boundary
,”
Phys. Chem. Liq.
0031-9104,
21
, pp.
147
156
.
37.
O’Neill
,
M. E.
,
Ranger
,
K. B.
, and
Brenner
,
H.
, 1986, “
Slip at the Surface of a Translating-Rotating Sphere Bisected by a Free Surface Bounding a Semi-Infinite Viscous Fluid: Removal of the Contact-Line Singularity
,”
Phys. Fluids
1070-6631,
29
, pp.
913
924
.
38.
Dussan
,
E. B.
, V
, 1976, “
The Moving Contact Line: The Slip Boundary Condition
,”
J. Fluid Mech.
0022-1120,
77
, pp.
665
684
.
39.
Hocking
,
L. M.
, 1977, “
Moving Fluid Interface. 2. Removal of Force Singularity by a Slip-Flow
,”
J. Fluid Mech.
0022-1120,
79
, pp.
209
229
.
40.
Bird
,
B.
,
Stewart
,
W.
, and
Lightfoot
,
E.
, 2002,
Transport Phenomena
,
2nd ed.
,
Wiley
,
New York
.
You do not currently have access to this content.